Bachelor-Studium Medical and Pharmaceutical Biotechnology
Wollen Sie helfen, die Lebensqualität von Millionen Patientinnen und Patienten weltweit zu verbessern? Mit dem Bachelor-Studium Medical and Pharmaceutical Biotechnology haben Sie die Chance dazu.
Die Biotechnologie ist einer der am schnellsten wachsenden Forschungsbereiche der Welt. Qualifizierte Expertinnen, Experten, Managerinnen, Manager, Forscherinnen und Forscher werden daher dringend gesucht. Als Absolventin oder Absolvent haben Sie das Fachwissen, um an bahnbrechenden Innovationen in der Biotechnologie mitzuarbeiten.
Der Studienbeitrag zzgl. 22,70 EUR ÖH-Beitrag gilt für EU- bzw. EWR-Staatsbürgerinnen und -Staatsbürger. Bitte beachten Sie, dass für Nicht-EU/EWR-Staatsbürgerinnen und -Staatsbürger eigene Studienbeiträge gelten.
Das Studium
Der Studiengang wird in englischer Sprache geführt und umfasst naturwissenschaftliche, biomedizinische und technische Grundlagen in Form von Theorieblöcken und umfangreichen Laborpraktika.
Die Schwerpunkte sind
Medizinische Biotechnologie
Vorlesungen und Laborübungen in den Bereichen biochemische Prozesse, Zell- und Molekularbiologie und Gentechnik inklusive der verschiedenen Analysetechniken bilden eine fundierte Wissensgrundlage. Zusätzlich erhalten Sie Einblick in die Humanmedizin und in die pharmazeutischen Wissenschaften, um die Arzneimittelwirkung und deren Herstellung zu verstehen.
Pharmazeutische Biotechnologie
Ein wichtiger Teilaspekt des Studiums: Lehrveranstaltungen, die die theoretischen Grundlagen und die praktische Umsetzung von Prozessen in der biopharmazeutischen Industrie behandeln. Das beinhaltet unter anderem die Auslegung von biopharmazeutischen Produktionsprozessen und die Grundlagen der Planung von dazugehörigen Produktionsstätten.
Die Lehrveranstaltungen im Labor stellen einen Musterprozess aus der Industrie repräsentativ dar.
Qualitätsmanagement
Hohe Qualitätsstandards in der medizinischen und pharmazeutischen Industrie sind entscheidend für die Sicherheit von Arzneimitteln und Biopharmazeutika. Daher ist profundes Wissen im Bereich Qualitätsmanagement unerlässlich.
Wirtschaftliche Grundlagen
Sie erwerben wissenschaftliches Grundlagenwissen. Außerdem beschäftigen Sie sich mit Fragen von Biotech-Unternehmen und Arzneimittelzulassung und bereiten sich auf die Arbeit in einem interdisziplinären Umfeld vor.
Fokus auf praktischer Arbeit
Bereits ab dem ersten Semester setzen Sie Ihr theoretisch erworbenes Wissen im Labor intensiv in die Praxis um. Dazu gehören Mikrobiologie, Biochemie, Gentechnik, Zellkultur und die Arbeit mit Bioreaktoren. Im Praktikum des fünften Semesters können Sie so ein eigenes Forschungsprojekt durchführen. Die Ergebnisse können die Grundlage für Ihre Bachelor-Arbeit sein.
International opportunities
Im zweiten Jahr können Sie ein Austauschsemester an einer unserer Partner-Universitäten (Dublin, Linköping, Nijmegen, Vlissingen) absolvieren.
Eine besonders attraktive Option ist das duale Studium, das wir gemeinsam mit der finnischen University of Applied Sciences in Turku anbieten. Zusätzlich zum Bachelor of Science am IMC Krems kann Ihnen so der Abschluss des Studiengangs Biotechnology and Chemical Engineering an unserer Partner-Hochschule verliehen werden.
Biotechnologie leicht erklärt
Die Biotechnologie ist eine interdisziplinäre Studienrichtung und integriert Wissensgebiete aus Medizin, Chemie, Biologie, Physik und Pharmazie. Erkenntnisse aus dieser multidisziplinären Wissenschaft werden integrativ genutzt: So werden als Beispiel biologische Systeme für die Herstellung von therapeutischen Molekülen oder Antikörpern für Bereiche wie die Krebstherapie eingesetzt.
Neue Ansätze für bestehende Krankheitsbilder
Durch die Bereitstellung innovativer medizinischer Wirkstoffe und Diagnoseverfahren hat sich die Biotechnologie in den letzten Jahren zu einer Schlüsseltechnologie der Zukunft entwickelt.
In der medizinischen Biotechnologie stehen zunehmend Stammzellen oder das Züchten von Geweben im Forschungsfokus. Dadurch lassen sich Krankheiten behandeln, die bisher als unheilbar galten.
Dementsprechend ist auch die medizinische und pharmazeutische Biotechnologie stark fachübergreifend. Sie konzentriert sich aber im Speziellen auf die Naturwissenschaften, auf Biomedizin und Technik.
" Medizinisch-pharmazeutische Theorie kombiniert mit umfangreichen Laborpraktika: Unsere Studierenden bekommen eine Basis für ihren Einstieg in die Disziplin der Biotechnologie. Sie werden an der Lösung von Problemen mitarbeiten, auf die die Medizin heute keine befriedigenden Antworten hat. Sie bekommen die Chance, die Lebensqualität von Menschen weltweit zu verbessern. "
Studiengangsleiter Harald Hundsberger
Erfolgskonzept: Theorie + Praxis
Das Studium umfasst 3 Säulen:
- 1
1. Die Grundlagen
In den Semestern 1-4
Im Zuge Ihres Studiums setzen Sie sich mit allen Themen der medizinischen und pharmazeutischen Biotechnologie auseinander. Am Beginn des Studiums lernen Sie die Grundlagen der Naturwissenschaften, Biomedizin, Technik und Analytik kennen, um sich danach vertiefend mit der Materie auseinanderzusetzen. Darüber hinaus umfasst der Lehrplan Qualitätsmanagement, betriebswirtschaftliche Grundlagen und Projektmanagement.
Außerdem verbringen Sie von Anfang an viel Zeit im Labor. In kleinen Gruppen machen Sie sich mit den wissenschaftlichen Abläufen vertraut und setzen das Gelernte gleich praktisch um.
- 2
2. Das Praktikumssemester
Im 5. Semester
Im 5. Semester absolvieren Sie ein Praktikumssemester. Mehr als 50 % der Medical and Pharmaceutical Biotechnology Studierenden absolvieren ihr Praktikum im Ausland bei internationalen Unternehmen, Forschungseinrichtungen oder Universitäten.
Vor und während des Praktikums werden Sie von uns betreut: Das Einzelcoaching mit unserer Praktikumskoordination ist darauf ausgerichtet, Ihre Stärken und Entwicklungspotenziale zu erkennen und darauf aufbauend gemeinsam den geeigneten Praktikumsplatz in einem nationalen oder internationalen Unternehmen zu finden.
Mehr Auslandserfahrung gefällig? Im 3. oder 4. Semester können Sie ein Austauschsemester an einer unserer Partner-Universitäten absolvieren.
- 3
3. Die Spezialisierung
Im 6. Semester
Gegen Ende Ihres Studiums entscheiden Sie sich für eines der 2 Wahlfächer: Production of Therapeutic Proteins im Bereich der medizinischen Biotechnologie oder Drug Development Management im Bereich der pharmazeutischen Biotechnologie.
Das Ziel der medizinischen Biotechnologie ist es, beschädigte Zellen oder Organe nicht durch Transplantationen oder Dialyse zu behandeln, sondern durch natürliche Körperzellen. Die pharmazeutische Biotechnologie setzt sich mit der Produktherstellung und Handhabung auseinander. Antibiotika, die mithilfe von Mikroorganismen in großen Bioreaktoren hergestellt werden, sind Beispiele für traditionelle biotechnologische Produkte, die in der Pharmazie verwendet werden. Monoklonale Antikörper und andere therapeutische Proteine sind Schlüsselelemente für die Entwicklung der personalisierten Medizin.
Studienplan
Was wird Sie im Studium genau erwarten? Der Studienplan gibt Ihnen eine Übersicht.
Klicken Sie auf die einzelnen Lehrveranstaltungen um nähere Informationen zu erhalten.
Course SWS ECTS Fundamentals in Mathematics Applied Mathematics Applied Mathematics - Theory 2 3 Applied Mathematics - Theory
Module: Applied MathematicsRoot module: Fundamentals in MathematicsSemester: 1 Course code: AMTI1VO Contact hours per week: 2 ECTS: 3Course Content:- Performing calculations with indices and logarithms (common and natural logarithms)
- Solving and applying quadratic equations and functions (linear, quadratic, polynomial, exponential and trigonometric [sin, cos and tan])
- Differentiation (first and second derivatives)
- Integration (standard integrals)
- Basic principles of statistics: statistical analysis of measurements – samples and population, averages and their graphical representation
- empirical dispersion (range, linear distribution and empirical standard deviation)
Course outcome:Upon completion of this course students are able to:
- use applied mathematics assumptions and carry out calculations,
- apply calculations and interpret examples out of biotechnology. practice
Applied Mathematics - Exercise 1 1 Applied Mathematics - Exercise
Module: Applied MathematicsRoot module: Fundamentals in MathematicsSemester: 1 Course code: AMEI1UE Contact hours per week: 1 ECTS: 1Course Content:- Practical exercises on lecture topics
Course outcome:Upon completion of this course students are able to:
- use applied mathematics assumptions and carry out calculations,
- calculate and interpret examples out of biotechnology practice.
Introduction to Data Science I 1 1 Introduction to Data Science I
Module: Fundamentals in MathematicsRoot module: Fundamentals in MathematicsSemester: 1 Course code: IDSI1VO Contact hours per week: 1 ECTS: 1Course Content:- Fundamentals of IT
- Efficient usage of Microsoft Office applications, in particular Excel (table structures and calculations, graphical analysis of data)
- Software: commercial applications and open source (databases, statistics programs)
- Network architecture (company network, process control systems)
Course outcome:Upon completion of this course students are able to:
- explain the basics of computer architecture, and data processing,
- use Microsoft applications (e.g. Excel) for data processing, anasylis and graphical presentation,
- explain the basics of data processing using different software applications.
Introduction to Laboratory Introduction to Laboratory Techniques 1 1 Introduction to Laboratory Techniques
Module: Introduction to LaboratoryRoot module: Introduction to LaboratorySemester: 1 Course code: ILT1LB Contact hours per week: 1 ECTS: 1Course Content:- Basic techniques for laboratory-based scientific work
- Safety training and working with safety data sheets
- Introduction to laboratory equipment (glassware, etc.)
- Using laboratory equipment (e.g. scales, pH meters and spectrophotometers)
- Basic laboratory techniques
- Handling acids, bases and organic solvents
- Working with indicators
- Producing solutions and serial dilutions; calculating concentrations and estimating errors
Course outcome:- Upon completion of this course students are able to:
- perform the basic practical skills associated with day-to-day laboratory work,
- produce simple buffers and solutions,
- apply fundamental measurement techniques such as pH measurement,
- describe important safety regulations for laboratory work.
Basics of Chemistry Chemical Calculations 1 2 Chemical Calculations
Module: Basics of ChemistryRoot module: Basics of ChemistrySemester: 1 Course code: CC1VO Contact hours per week: 1 ECTS: 2Course Content:- Application-based calculations in a laboratory environment; determining and working with physical units
- Information on concentrations: calculating molarity, moles, percentages, normality and density
- Determining the stoichiometry of chemical reactions
- Classification of inorganic compounds
- Determining oxidation state; calculating pH values
Course outcome:Upon completion of this course students are able to:
- apply basical calculations underpinning biotechnology in examples (e.g. calculations for concentrations, reactions, pH values, etc.),
- explain the fundamental scientific principles and laws of chemistry.
General and Inorganic Chemistry 3 4 General and Inorganic Chemistry
Module: Basics of ChemistryRoot module: Basics of ChemistrySemester: 1 Course code: GIC1VO Contact hours per week: 3 ECTS: 4Course Content:- Introduction to chemistry
- Importance of mass and units in the natural sciences
- Atoms and atomic models
- The periodic table
- Chemical bonds
- Chemical equilibrium
- Fundamentals of thermodynamics
- Reaction kinetics
- Properties of the elements and their inorganic compounds
- Acids and bases
- Redox reactions
- Solubility of salts
Course outcome:Upon completion of this course students are able to:
- explain the fundamental scientific principles and laws of chemistry,
- illustrate key chemistry concepts underpinning biotechnology, and demonstrate and apply this knowledge in examples (e.g. calculations for concentrations, reactions, pH values, etc.).
Analytical Chemistry Laboratory 2 3 Analytical Chemistry Laboratory
Module: Basics of ChemistryRoot module: Basics of ChemistrySemester: 1 Course code: ACL1LB Contact hours per week: 2 ECTS: 3Course Content:- Basic day-to-day laboratory methods illustrated using analytical chemistry experiments
- Qualitative analysis methods: alkali, alkaline-earth and heavy metals, halogens, sulphates and carbonate detection
- Quantitative analysis methods: gravimetry, various forms of titration (acid-base, redox and complex titration)
- Equilibrium reactions, reaction kinetics
Course outcome:Upon completion of this course students are able to:
- illustrate key chemistry concepts underpinning biotechnology, and demonstrate and apply this knowledge in examples (e.g. calculations for concentrations, reactions, pH values, etc.),
- carry out basic qualitative and quantitative analysis methods in the laboratory,
- apply basic day-to-day laboratory methods illustrated using analytical chemistry experiments.
Basics of Physics Applied Physics - Theory 2 3 Applied Physics - Theory
Module: Basics of PhysicsRoot module: Basics of PhysicsSemester: 1 Course code: APT1VO Contact hours per week: 2 ECTS: 3Course Content:- Fundamental physical values
- Equations of motion
- Equations of motion on a single plane
- Force and momentum
- Movements along an orbit
- Fields and energy
- Work and power
- Material physics
- Thermodynamics
- Geometric optics and waves
Course outcome:Upon completion of this course students are able to:
- explain basic physical/scientific principles (f.e Thermodynamics,..),
- identify physical values that have a significant effect on biotechnological processes.
Applied Physics - Laboratory 3 4 Applied Physics - Laboratory
Module: Basics of PhysicsRoot module: Basics of PhysicsSemester: 1 Course code: APL1LB Contact hours per week: 3 ECTS: 4Course Content:- Working with devices
- Evaluating measurements and estimating errors
- Determining the molar mass of an unknown substance
- Laws of gases
- Heat transfer
- Conductivity
- Viscosity
- Spectrometers/goniometers
- Determining heat levels required for melting and evaporation
- Surface tension
- Molecular physics
- Absorption spectra
- Determining elementary charge
- Determining the Faraday constant
- Thermodynamics
Course outcome:Upon completion of this course students are able to:
- perform and interpret simple, yet fundamental physical experiments,
- record and evaluate results of measurements, estimate errors in the results generated and write reports,
- explain fundamental physical processes on the basis of experiments.
Human Medicine I Anatomy and Physiology 2 2 Anatomy and Physiology
Module: Human Medicine IRoot module: Human Medicine ISemester: 1 Course code: AP1VO Contact hours per week: 2 ECTS: 2Course Content:- Cells and their functions
- Basics of cell communication
- Tissue structure
- Anatomy and physiology of organs and blood
- Homeostasis in the human organism
Course outcome:Upon completion of this course students are able to:
- explain the most important physiological processes in the human body,
- explain contributions of organs and systems to the maintenance of homeostasis.
Human Genetics 1 2 Human Genetics
Module: Human Medicine IRoot module: Human Medicine ISemester: 1 Course code: HG1VO Contact hours per week: 1 ECTS: 2Course Content:- Introduction to human genetics
- Mendelian inheritance
- Exceptions to Mendel’s laws
- Sexuality and heredity
- Multi-factor hereditary characteristics
- DNA and chromosomes
- Genetic polymorphism
- Replication, transcription and translation
- Mutation and hereditary diseases
- Population genetics
- Human evolution
Course outcome:Upon completion of this course students are able to:
- illustrate the complexity and diversity of genetic processes,
- illustrate the connection between genetic information and cellular structure.
Microbiology Applied Microbiology 1 2 Applied Microbiology
Module: MicrobiologyRoot module: MicrobiologySemester: 1 Course code: AM1VO Contact hours per week: 1 ECTS: 2Course Content:- Introduction to microbiology
- Structure of bacterial cells
- Bacterial growth, kinetics, media and conditions for growth
- Growth monitoring and sterilisation
- Basics of bacterial metabolism
- Introduction to systematics, and archaea
Course outcome:Upon completion of this course students are able to:
- explain bacterial cells and their growth,
- explain and evaluate growth monitoring methods and tools,
- explain and evaluate sterilization methods,
- illustrate principles of bacterial metabolism and principles of bacterial systematics,
- compare the differences between bacteria and archea.
Microbiological Working Techniques Laboratory 2 2 Microbiological Working Techniques Laboratory
Module: MicrobiologyRoot module: MicrobiologySemester: 1 Course code: MWT1LB Contact hours per week: 2 ECTS: 2Course Content:Students learn about basic techniques in microbiology:- Producing media and plates
- Working under sterile conditions
- Cultivating and quantifying microorganisms and growth curves
- Staining methodes
- Microscopy
- Growth monitoring and sterilisation
Course outcome:Upon completion of the course, students are able to:
- explain and apply the concept of sterility and recognize sources of contamination,
- perform basic microbiological methods like growing microorganisms, staining them, using the microscope etc.,
- plan simple experiments,
- document the experiments properly,
- analyse critically method and outcome of experiments and sum it up in a written report,
- Sum up the critical analysis in a presentation and present the results.
Course SWS ECTS Organic Chemistry Organic Chemistry - Theory 2 3 Organic Chemistry - Theory
Module: Organic ChemistryRoot module: Organic ChemistrySemester: 2 Course code: OCT2VO Contact hours per week: 2 ECTS: 3Course Content:- Basic concepts of organic chemistry
- Chemistry of carbon
- Types of covalent bond
- Simple hydrocarbon compounds (alkanes, alkenes, alkynes and cycloalkanes)
- Functional groups in organic chemistry
- Aromatic and heterocyclic compounds
- 3D structures and classification of organic compounds (isomers, chirality and conformations)
- Reaction mechanisms: nucleophiles and electrophiles
- Substitution reactions
- Elimination reactions
- Polymerisation reactions
- Chemistry of amino acids
- Alkaloids and carbohydrates Presentation and discussion of basic scientific principles
Course outcome:Upon completion of this course students are able to:
- explain the theoretical principles of organic chemistry, with a focus on component categories and reaction mechanisms,
- apply practical organic separation and detection skills and synthesise simple organic compounds,
- explain documentations on synthesis reactions and estimate the related risks.
Organic Chemistry - Laboratory 2 3 Organic Chemistry - Laboratory
Module: Organic ChemistryRoot module: Organic ChemistrySemester: 2 Course code: OCL2LB Contact hours per week: 2 ECTS: 3Course Content:- Basic organic chemistry techniques and basic synthesis
- Distillation and detection of alcohol
- Aspirin synthesis and analysis (thin-layer chromatography, analysing melting points, recrystallisation and UV detection)
- Producing soap and detergents
- Carbohydrate analysis
- Reaction kinetics
- Vitamin C detection
Course outcome:Upon completion of this course students are able to:
- apply practical organic separation and detection skills and synthesise simple organic compounds,
- apply documentation on synthesis reactions and estimate the related risks,
- perform moderate complex laboratory experiments.
Human Medicine II Human Diseases 1 1 Human Diseases
Module: Human Medicine IIRoot module: Human Medicine IISemester: 2 Course code: HD2VO Contact hours per week: 1 ECTS: 1Course Content:- Basic physiological principles of regulation, adaptation and homeostasis
- Central pathophysiological processes in the human organism
- Key human illnesses, like
- Cancer
- Immune disorders
- Hormonal disorders
Course outcome:- explain and analyze pathophysiological links,
- explain and classify common human illnesses,
- explain biotechnological treatment options.
Immunology and Medical Microbiology 2 2 Immunology and Medical Microbiology
Module: Human Medicine IIRoot module: Human Medicine IISemester: 2 Course code: IMM2VO Contact hours per week: 2 ECTS: 2Course Content:- Structure and function of the immune system
- Humoral immune responses
- Cell-mediated immune responses
- Infectious diseases
- Human microbiome
- Viruses
- Bacterial pathogens
- Prions, viroids and parasites
- Options for prevention and therapy
Course outcome:- illustrate the most important components of the immune system and explain their interplay and communication,
- classify the different groups of pathogens and explain their interaction with the immune system,
- Explain preventive methods and therapies,
- analyze selected topics from immunology and medical microbiology and present them.
Microbiology and Pharmaceutical Production Environment Microbiological Monitoring Laboratory 2 2 Microbiological Monitoring Laboratory
Module: Microbiology and Pharmaceutical Production EnvironmentRoot module: Microbiology and Pharmaceutical Production EnvironmentSemester: 2 Course code: MML2LB Contact hours per week: 2 ECTS: 2Course Content:- Basic microbial techniques
- Surface, air and water monitoring
- Isolating and identifying bacteria
- Disinfection and sterilisation
- Work in accordance with SOPs
- Preparing SOPs
Course outcome:Upon completion of this course students are able to:
- illustrate the statutory regulations applicable to pharmaceutical production,
- explain the conditions required for microbial monitoring,
- exlain and apply surface, air and water monitoring methods in connection with microbes,
- explain and apply techniques for isolating and identifying microbes,
- prepare/write and apply standard operating procedures (SOPs),
- keep records of results, measurements, results of analytical tests and samples,
- independently plan simple experiments,
- analyse and present results of the experiments.
Introduction to Contamination Control and Clean Room Training 1 1 Introduction to Contamination Control and Clean Room Training
Module: Microbiology and Pharmaceutical Production EnvironmentRoot module: Microbiology and Pharmaceutical Production EnvironmentSemester: 2 Course code: CCCT2UE Contact hours per week: 1 ECTS: 1Course Content:- Introduction to statutory regulations applicable to pharmaceutical manufacturing
- Requirements for clean rooms
- Description of classes of clean room
- Principles and flow conditions in clean rooms
- Demonstration: putting on clean room clothing
- Familiarisation with and understanding special requirements for working in clean rooms
- Behaviour in clean rooms
- Microbiological and particle monitoring methods
- Minimising contamination in clean rooms
- Planning clean rooms
Course outcome:Upon completion of this course students are able to:
- summarize the requirements for clean rooms and apply the knowledge for cleanroom concepts,
- compare/summarize the various classes of clean rooms,
- apply putting on clean room clothing correctly,
- compare/summarize and apply the specific requirements for working in clean rooms.
Biophysics Applied Biophysics 2 3 Applied Biophysics
Module: BiophysicsRoot module: BiophysicsSemester: 2 Course code: ABP2VO Contact hours per week: 2 ECTS: 3Course Content:- Introduction to electricity (Ohm’s law, Kirchhoff's circuit laws)
- electromagnetic waves
- physical principles and characteristics of synthetic and biological membranes, characterisation of biomembrane properties (Langmuir scales, photobleaching, electrons and atomic force microscopy)
- cell biophysics: cell characterisation methods (determining viscosity, patch clamp, cell electrophoresis, light microscopy, scanning electron microscopy, confocal fluorescence microscopy, cell impedance)
- radiophysics and its applications in nuclear medicine: principles of nuclear physics, dosimetry, nuclear medical procedures (gamma camera, PET, kinetic examinations, immunoscintigraphy)
- environmental biophysics.
Certain topics will be examined in greater detail using sample calculations and demonstrations.
Course outcome:Upon completion of this course students are able to:
- explain the physical principles and modern analytical methods that underlie biomedicine,
- explain the principles of nuclear physics, dosimetry, nuclear medical procedures (gamma camera, PET, kinetic examinations, immunoscintigraphy).
Biophysics Laboratory 2 3 Biophysics Laboratory
Module: BiophysicsRoot module: BiophysicsSemester: 2 Course code: BPL2LB Contact hours per week: 2 ECTS: 3Course Content:Experiments will be performed on electricity, magnetism and the following basic biophysical phenomena: sound and sound propagation, phase transitions in polar fluids, characterisation of electrolytes, optical instruments and the characterisation of various sources of visible radiation, partial pressure in gaseous mixtures, radioactivity and adsorption.
Course outcome:Upon completion of this course students are able to:
- apply/use analytical instruments and spectrum interpretation,
- use operating instructions and other common forms of documentation for the use and maintenance of instruments.
Biostatistics and Data Analysis in Biotechnology Biostatistics 2 4 Biostatistics
Module: Biostatistics and Data Analysis in BiotechnologyRoot module: Biostatistics and Data Analysis in BiotechnologySemester: 2 Course code: BST2VO Contact hours per week: 2 ECTS: 4Course Content:- Descriptive statistics:
Averages (arithmetic, geometric and harmonic mean, and median)
Dispersion (variance, standard deviation and coefficient of variation)
Histograms and frequency distributions - Box plots
- Simple linear regression
- Inferential statistics:
Parametric tests (comparing independent and paired means, analysis of varianceNon-parametric tests (comparing independent and paired means, and analysis of variance) - Tests on categorial data
Course outcome:Upon completion of this course students are able to:
- explain the conceptual basis of statistical tests used in the field of biotechnology and life sciences,
- select suitable statistical tests for biotechnology questions, carry out such tests using relevant software,
- interpret and analyze the results obtained from biostatistical testing.
Introduction Data Science II 1 2 Introduction Data Science II
Module: Biostatistics and Data Analysis in BiotechnologyRoot module: Biostatistics and Data Analysis in BiotechnologySemester: 2 Course code: IDSII2VO Contact hours per week: 1 ECTS: 2Course Content:Employ tools for data integration and analysis (e.g. KNIME) for generating workflows aiming at
- reading in large amounts of data
- processing data
- visualizing data
- analyzing data
Course outcome:Upon completion of this course students are able to:
- implement customized workflows for data analysis and integration,
- analyze real-life data relevant for life sciences.
Molecular Biology of the Cell Cell Biology 2 3 Cell Biology
Module: Molecular Biology of the CellRoot module: Molecular Biology of the CellSemester: 2 Course code: CB2VO Contact hours per week: 2 ECTS: 3Course Content:- Prokaryotic and eukaryotic cells (plant/animal cells)
- Cell organells: nucleus (chromosomes), endoplasmic reticulum, Golgi apparatus, mitochondria, peroxisomes, endosomes, and lysosomes
- Biological membrane systems and molecule transport (carrier etc.)
- Sorting of proteins (from the ER to the cell exterior/)lysosomes/PM
- Cytoskeleton, intermediate filaments, microtubules and actin
- Motorproteins
- Exocytosis and endocytosis
- Cell migration
- Mitosis (Cell Division)
Course outcome:Upon completion of this course students are able to:
- compare prokaryotic and eukaryotic cells and between plant and animal cells,
- explain the function of the various cell compartments and cell organelles, the detailed mechanism of cell division, cell movement and cell clusters, and communication between cells.
Molecular Biology and Genetic Engineering - Theory 2 3 Molecular Biology and Genetic Engineering - Theory
Module: Molecular Biology of the CellRoot module: Molecular Biology of the CellSemester: 2 Course code: MBGE2VO Contact hours per week: 2 ECTS: 3Course Content:- Amino acids and proteins
- Structure and function of DNA
- Replication
- Transcription and checking transcripts
- Translation
- Recombination
- DNA sequencing and PCR
- Isolating nucleic acids
- Cloning strategies
- Vector systems and expressions of recombinant proteins
Course outcome:Upon completion of this course students are able to:
- explain genetic processes such as replication, transcription, translation and recombination,
- illustrate the theoretical principles for working with nucleic acids, cloning genes and expressing recombinant proteins.
Course SWS ECTS Medical Biology Cell Physiology and Medical Molecular Biology 2 3 Cell Physiology and Medical Molecular Biology
Module: Medical BiologyRoot module: Medical BiologySemester: 3 Course code: CPMB3VO Contact hours per week: 2 ECTS: 3Course Content:- Cell communication and signal transduction
- Regulating the cell cycle (G1, DNA synthesis and mitosis)
- Regulating apoptosis
- Ion channels and transporters
- Physiology of nerve cells
- Structure and physiology of epithelia
- Stem cells, proliferation and cell differentiation
Course outcome:Upon completion of this course students are able to:
- explain general physiological processes in eukaryotic cells,
- classify and carry out mechanistic evaluation of individual cell communication and signal transduction pathways.
Cell Culture Techniques 1 1 Cell Culture Techniques
Module: Medical BiologyRoot module: Medical BiologySemester: 3 Course code: CCT3VO Contact hours per week: 1 ECTS: 1Course Content:- Cell culture laboratory equipment: clean benches, incubators, centrifuges and light microscopes
- Biological safety and hazardous substances
- Growth media and components
- Transfection, transduction and transformation
- Primary cells and cell lines
- Flow cytometer
- Confocal microscopy
- RNAi techniques and the CRISPR/Cas system
- Assay formats in applied cell biology research
- Cell disruption and analysis
- Cell-based testing systems for screening of active ingredients
Course outcome:Upon completion of this course students are able to:
- explain the theoretical principles as well as the advantages and disadvantages of the most important (and most often used) techniques and technologies in modern cell biology.
Cell Culture Laboratory I 2 3 Cell Culture Laboratory I
Module: Medical BiologyRoot module: Medical BiologySemester: 3 Course code: CCL3LB Contact hours per week: 2 ECTS: 3Course Content:- Working under sterile conditions
- Waste disposal and autoclaving
- Determining cell counts
- Thawing and freezing eukaryotic cells
- Growth curves of eukaryotic cells
- Passaging suspension cultures and adherent cells
- Genetic manipulation of cell lines
- Light and fluorescence microscopy
Course outcome:Upon completion of this course students are able to:
- use equipment and devices used in cell biology research in order to address scientific questions,
- independently apply fundamental experimental techniques used in cell biology research.
Theoretical and Practical Biochemistry Biochemistry - Theory 3 4 Biochemistry - Theory
Module: Theoretical and Practical BiochemistryRoot module: Theoretical and Practical BiochemistrySemester: 3 Course code: BCHT3VO Contact hours per week: 3 ECTS: 4Course Content:- The properties of water and aqueous solutions
- Fundamentals of biological thermodynamics
- Nucleotides and nucleic acids
- Amino acids proteins
- Carbohydrates
- Lipids and biological membranes
- Enzymes
- Introduction to metabolsim
- Glycolysis, gluconeogenesis and glycogen metabolism
- Citric acid cycle
- Oxidative phosphorylation and photosynthesis
- Fat metabolism
- Amino acid metabolism
- Nucleotide metabolism
- Regulation of metabolic pathways in complex organisms
- Metabolic disorders, the molecular principles behind them, and therapies
Course outcome:Upon completion of this course students are able to:
- explain the basic physical chemistry principles behind living systems,
- distinguish between the structural principles of biomolecules in terms of their chemical basis,
- delineate and asses the metabolic pathways used to produce energy and synthesize biomolecules within organism,
- explain regulation and the interplay between the most important metabolic pathways.
Biochemistry - Laboratory 2 2 Biochemistry - Laboratory
Module: Theoretical and Practical BiochemistryRoot module: Theoretical and Practical BiochemistrySemester: 3 Course code: BCHL3LB Contact hours per week: 2 ECTS: 2Course Content:- Producing buffers
- Biochemistry techniques: dialysis, gel filtration and methods for determining protein content
- SDS-PAGE, western blotting for serums and quantitative ELISA
- Enzyme kinetics
- Risk analysis and evaluation of corresponding experiments
Course outcome:Upon completion of this course students are able to:
- apply state-of-the-art methods for isolating and analyzing biomolecules,
- use methods learned in the Biostatistics course to analyze the data obtained,
- analyze and interpret the experimental data generated.
Laboratory Skills for Biotechnology Bioanalytics - Theory 1 2 Bioanalytics - Theory
Module: Laboratory Skills for BiotechnologyRoot module: Laboratory Skills for BiotechnologySemester: 3 Course code: IAT3VO Contact hours per week: 1 ECTS: 2Course Content:• Centrifugation
• UV-vis spectroscopy
• Fluorescence spectroscopy
• Electrophoresis
• Chromatography
• Mass spectrometryCourse outcome:• explain the physical principles and modern analytical methods that underlie biomedicine,
• compare main analytical technologies in the area of Biotechnology, Biochemistry and Molecular Biology (f.e. genetic engineering).
Bionalytics - Laboratory 3 5 Bionalytics - Laboratory
Module: Laboratory Skills for BiotechnologyRoot module: Laboratory Skills for BiotechnologySemester: 3 Course code: IAL3LB Contact hours per week: 3 ECTS: 5Course Content:• Determining cytotoxicity using luminescence spectrometry
• PCR and qPCR
• Fluorescence spectroscopy
• DNA/protein quantification, UV/vis spectroscopy
• Chromatography
• Performance qualification for analytical instrumentsCourse outcome:• apply main analytical technologies in the area of Biotechnology, Biochemistry and Molecular Biology (f.e. genetic engineering),
• work with nucleic acids,
• apply calibration and maintain measuring devices,
• carry out practical experiments in a quality-controlled environment.
Genetic Engineering Laboratory 2 3 Genetic Engineering Laboratory
Module: Laboratory Skills for BiotechnologyRoot module: Laboratory Skills for BiotechnologySemester: 3 Course code: GEL3LB Contact hours per week: 2 ECTS: 3Course Content:• Working with E. coli
• Transforming E. coli
• Plasmid preparation
• Restriction digestion
• DNA gel electrophoresis
• Calibrating pipettes
• Spectrophotometrically measurementsCourse outcome:• apply calibration and maintain measuring devices (f.e.microlitre volume),
• perform basic experiments of molecular biology.
Fundamentals of Engineering Measurement and Control Systems I 1 1 Measurement and Control Systems I
Module: Fundamentals of EngineeringRoot module: Fundamentals of EngineeringSemester: 3 Course code: MCSI3VO Contact hours per week: 1 ECTS: 1Course Content:- Basics of sensor technology and sensor/control engineering, and their application in biotechnology
- Fundamentals of electrotechnology
- Measuring systems (conversion and classification)
- Sensor design (interfaces, signal processing)
- Sensor systems (pressure, flow and temperature sensors)
- Control engineering systems (PI, PD and PID controllers)
Course outcome:Upon completion of this course students are able to:
- explain the fundamental measurement principles of electronics and their application in controllers for bioprocess technology,
- explain and interpret technical drawings and circuit diagrams,
- correctly carry out the properties of materials in use.
Bioprocess Technology Theory I 1 1 Bioprocess Technology Theory I
Module: Fundamentals of EngineeringRoot module: Fundamentals of EngineeringSemester: 3 Course code: BTT3VO Contact hours per week: 1 ECTS: 1Course Content:- Introduction to bioprocess technology
- Hydrostatics
- Hydrodynamics
- Pumping fluids and characteristic curves of pumps
- Piping
- Net Positive Suction Head and Total Dynamic Head
Course outcome:Upon completion of this course students are able to:
- explain Hydrostatics and solve corresponding examples,
- understand Hydrodynamics and solve corresponding examples,
- apply the Bernoulli-equation to ideal and realistic calculations and solve corresponding tasks,
- apply/use calculations of Total Dynamic Head and Net Positive Suction Head for instalments.
Quality Management and GLP Introduction to Quality Management 1 1 Introduction to Quality Management
Module: Quality Management and GLPRoot module: Quality Management and GLPSemester: 3 Course code: IQM3VO Contact hours per week: 1 ECTS: 1Course Content:- Quality assurance in companies by means of procedural instructions underpinned by specifications and SOPs
- Quality management in companies (vision, mission, strategy)
- Quality management cycle
- Quality controls
- Indicators
- Quality assurance
- Practical exercises in which students draw up and present simple specifications, SOPs or procedural instructions
Course outcome:Upon completion of this course students are able to:
- explain and interpret quality assurance processes for pharmaceuticals,
- explain and interpret the key statutory regulations applicable to the production of biopharmaceuticals.
GLP/GMP - Theory 1 1 GLP/GMP - Theory
Module: Quality Management and GLPRoot module: Quality Management and GLPSemester: 3 Course code: GGT3VO Contact hours per week: 1 ECTS: 1Course Content:- Statutory regulations on GLP and the set-up of GLP test laboratories
- Responsibilities, test set-ups and carrying out studies in accordance with GLP
- Overview of statutory regulations on GLP and the set-up of production facilities
- Core aspects of quality management at production facilities in accordance with GLP
- Quality assurance for biopharmaceuticals produced in accordance with GLP
- GLP/GMP regulations during biotechnology research and development processes
Course outcome:Upon completion of this course students are able to:
- explain and can apply GLP regulations by planing and generating of study plans,
- explain and apply Quality Controll at production facilities in accordance with GMP,
- illustrate and apply GMP regulations by planing and preparing of documents.
Practical Training in Industry Practical Training Application and Preparation 1 1 Practical Training Application and Preparation
Module: Practical Training in IndustryRoot module: Practical Training in IndustrySemester: 3 Course code: PAP3SE Contact hours per week: 1 ECTS: 1Course Content:- Writing CVs and covering letters
- Career and internship opportunities in industry and research
- Coaching support with internship applications
Course outcome:Upon completion of this course students are able to:
- generate application documents,
- choose a suitable place for Practical Training Semester (PTS),
- illustrate different career paths in biotechnology.
Applied Bioinformatics Bioinformatics 2 2 Bioinformatics
Module: Applied BioinformaticsRoot module: Applied BioinformaticsSemester: 3 Course code: BIN3VO Contact hours per week: 2 ECTS: 2Course Content:- Key biological databases and online tools: NCBI, EBI and ExPASy
- Tools for visualising biomolecules
- Sequence comparison and alignment of biomolecules
- Bioinformatics tools used in functional genome analysis
- Bioinformatics tools used in proteomics
- Bioinformatics tools in the laboratory: primer design, in silico cloning and calculating biomolecular properties
Course outcome:Upon completion of this course students are able to:
- explain, analyse and interpret sequential and structural differences of biomolecules,
- use internet tools to analyze the evolutionary relatedness of proteins and nucleic acids,
- use internet tools and software to analyze the structure, function and properties of biomolecules,
- explain and use tools for daily laboratory work such as primer design and in silico cloning.
Course SWS ECTS Pharmaceutical Production Processes Protein Purification and Bioprocess Technology Biochemical Analytics, Protein Purification 2 4 Biochemical Analytics, Protein Purification
Module: Protein Purification and Bioprocess TechnologyRoot module: Pharmaceutical Production ProcessesSemester: 4 Course code: BAPP4VO Contact hours per week: 2 ECTS: 4Course Content:- This course outlines the principles behind the following methods:
- Chromatographic principles (IEX, affinity, HIC, SEC, partition and adsorption)
- Chromatographic equipment (HPLC, FPLC, GC and SCFC) including detectors
- Proteomics methods (electrophoresis including CE, and blotting)
- Spectroscopy methods (UV-Vis, IR, Raman, MS including ionisation, and NMR)
Course outcome:Upon completion of this course students are able to:
- explain analytical methods in chromatography, spectroscopy, electrophoresis,
- explain and develop analytical processes using principles of chromatography, electrophoresis and spectroscopy.
Equipment and Production Design 2 3 Equipment and Production Design
Module: Protein Purification and Bioprocess TechnologyRoot module: Pharmaceutical Production ProcessesSemester: 4 Course code: EPD4VO Contact hours per week: 2 ECTS: 3Course Content:- Components in biopharmaceutical production facilities (WFI and ultra-pure steam; utilities, description of equipment for the production of cell inoculants, bioreactors) including exercises
- Downstream equipment
- Instrumentation in pharmaceutical production facilities
- QM element: preparing device specifications
Course outcome:Upon completion of this course students are able to:
- illustrate the key components of biotechnology facilities and installations and describe their basic functions,
- summarize and apply the basic steps involved in commissioning a biotechnology production facility,
- explain the principles of upstream and downstream processes,
- apply principles of typical equipment and production design to typical biopharmaceutical tasks.
Bioprocess Technology Theory II 2 4 Bioprocess Technology Theory II
Module: Protein Purification and Bioprocess TechnologyRoot module: Pharmaceutical Production ProcessesSemester: 4 Course code: BPTTII4VO Contact hours per week: 2 ECTS: 4Course Content:- Fundamentals of Reactor Design
- Fundamentals of Mass Balance
- Fundamentals of Heat Balance
- Kinetics in Bioprocess Technology
- Sterilisiation Techniques
- Principles of Fermentation
Course outcome:Upon completion of this course students are able to:
- explain and solve problems correlating with mass and heat balances,
- apply rules of bioprocess kinetics to typcial tasks like fermentation development,
- explain and apply typical sterilisation procedures,
- explain and apply principles of balancing, sterilisation and bioprocess kinetics.
Fermentation and Bioseparation Laboratory, Data Analysis 3 4 Fermentation and Bioseparation Laboratory, Data Analysis
Module: Pharmaceutical Production ProcessesRoot module: Pharmaceutical Production ProcessesSemester: 4 Course code: FBL4LB Contact hours per week: 3 ECTS: 4Course Content:- Structure and operation of fermentation in bioreactors
- Conducting fed-batch fermentation with bacteria
- Process management and problem-solving
- In-process and offline analytics
- Measuring, evaluating and interpreting process parameters during fermentation, and their effect on biological aspects of processes
- Practical skills required for working with bioreactors under sterile conditions
- Handling analytical devices (glucose measuring devices, FPLC, etc.)
Course outcome:Upon completion of this course students are able to:
- use scale tasks, pipeline system configurations, pump calculations, power inputs in stirred tanks, and heat and mass balancing at biopharmaceutical plants,
- use calculations for the configuration and management of biopharmaceutical processes,
- explain the connections between technology and microbiology,
- establish quality management principles in pharmaceutical processes.
Cell and Tissue Engineering Cell Culture Laboratory II 3 5 Cell Culture Laboratory II
Module: Cell and Tissue EngineeringRoot module: Cell and Tissue EngineeringSemester: 4 Course code: CLLII4LB Contact hours per week: 3 ECTS: 5Course Content:Theoretical principles:
- Cell-based testing of active ingredients
- Organotypic 3D cultivation and tissue engineering
- Personalised medicine Relationship between genotypes and sensitivity to active ingredients
- Tissue engineering methods
- Cellular microreactors and their applicationPractical work:
- Engineering blood vessels
- Engineering organotypic 3D microtumours
- Analysing and quantifying the invasive behaviour of tumour cells and 3D microtumours
- Confocal immunofluorescence microscopy: determining the intra-cellular localisation of proteins
- Reporter gene assays: quantifying activity in transcription factors
Course outcome:Upon completion of this course students are able to:
- discuss key topical issues in cell biology research,
- independently plan and carry out complex experimental work,
- perform qualification and validation of experimental techniques,
- analyse and interpret data and results.
Scientific Skills 2 3 Scientific Skills
Module: Cell and Tissue EngineeringRoot module: Cell and Tissue EngineeringSemester: 4 Course code: SSK4SE Contact hours per week: 2 ECTS: 3Course Content:- Literature databases with a focus on NCBI and PubMed
- Academic journals and the peer review process
- Rating, impact factor and academic quality
- Structure and content of scientific papers
- Writing academic articles: wording, style and structure (title, introduction, material and methods, results, discussion, references and acknowledgements)
- Guidelines for the title and introduction
- Presenting data and results
- Interpreting and discussing results, taking into account current knowledge
- Using software to manage references (Endnote, Reference Manager and Mendeley)
- Original scientific papers, review articles, bachelor, master and doctoral theses
- Funding scientific work
- Preparing and submitting research proposals
- Presenting work packages, milestones and targets
- Austrian and international funding bodies
- Fundamentals of scientific communication
- Communicating with stakeholders
- Careers in science and research: academia and industry
Course outcome:Upon completion of this course students are able to:
- carry out literature searches in databases,
- summarise and evaluate the results of experiments in a scientific paper and prepare the paper for publication,
- explain the peer review process,
- take part in active scientific discourse.
Applied Quality Management GLP/GMP - Seminar 2 4 GLP/GMP - Seminar
Module: Applied Quality ManagementRoot module: Applied Quality ManagementSemester: 4 Course code: GGL4SE Contact hours per week: 2 ECTS: 4Course Content:- Core aspects of GMP/GLP in practice / QM Documentation (GDP)
- Presentation of a GLP laboratory set-up / Theoretical background
- Detailed describing of experiments and procedures in Study Plan and Study Audit Report (Audit during the laboratory week)
- Lot Data Sheets
- Compiling the expected results
- Writing study reports; SOPs;
Course outcome:Upon completion of this course students are able to:
- identify the basic statutory regulations applicable to biopharmaceutical manufacturing,
- explain quality assurance processes for pharmaceuticals.
Genetic Engineering Laboratory under GLP 2 3 Genetic Engineering Laboratory under GLP
Module: Applied Quality ManagementRoot module: Applied Quality ManagementSemester: 4 Course code: GELG4LB Contact hours per week: 2 ECTS: 3Course Content:- Advanced molecular biology
- Independently carrying out a complex experiment planned and prepared by students in GLP/GMP seminar
- Techniques: DNA isolation, restriction analysis; quantification of DNA; DNA Extraction from agarose gel, agarose electrophoresis, ligation, preparation of competent cells, transformation and colony PCR / GLP documentation of all procedural steps
- Approaches to GLP-compliant documentation of results generated in experiments and summarising the results in study report
- Experiments will be carried out in the form of a GLP study Laboratory Audit
Course outcome:Upon completion of this course students are able to:
- independently apply knowledge of regulatory frameworks in practice, and draft SOPs and study plans
- carry out simple qualification of measuring devices in a quality-controlled environment
- generate plans for the most common methods and analytical techniques used in molecular biology, apply them under GLP-compliant conditions, and analyse and record the results
Course SWS ECTS Scientific Methods and Tools Bachelor Paper and Bachelor Exam Bachelor Seminar I 1 5 Bachelor Seminar I
Module: Bachelor Paper and Bachelor ExamRoot module: Scientific Methods and ToolsSemester: 5 Course code: BAI5BASE Contact hours per week: 1 ECTS: 5Course Content:- Definition of topic for bachelor paper
- Content and structure of bachelor paper
- Writing a bachelor paper proposal in accordance with the applicable guidelines
Course outcome:Upon completion of this course students are able to:
- independently write a bachelor paper proposal of the required length which adheres to academic guidelines by a pre-agreed deadline,
- establish links between their chosen topic and the wider subject area
- generate and correctly formulate a research question and develop a suitable research methodology,
- critically reflect on their approach (research questions and methodology).
Practical Training in Industry Practical Training Semester 0 25 Practical Training Semester
Module: Practical Training in IndustryRoot module: Practical Training in IndustrySemester: 5 Course code: PTS5BOPR Contact hours per week: 0 ECTS: 25Course Content:The practical training semester is spent in a company or research institution in the field of biotechnology and students learn to know the daily work life in these institutions.
Course outcome:Upon completion of this course students are able to:
- work in the professional field of biotechnology.
Course SWS ECTS Elective Module 1: Production of Therapeutic Proteins Journal Club for Current Issues Journal Club for Current Issues 1 2 Journal Club for Current Issues
Module: Journal Club for Current IssuesRoot module: Elective Module 1: Production of Therapeutic ProteinsSemester: 6 Course code: S1_JCCI6SE Contact hours per week: 1 ECTS: 2Course Content:- Literature research on the latest trends in the relevant field
- Reviewing relevant literature
- Presenting results of the literature review
- Discussion of contents of the selected literature
Course outcome:Upon completion of this course students are able to:
- structure and analyse scientific articles in their specialist field and use them for their thesis,
- apply literature research in the relevant field.
Recombinant Protein Technologies Measurement and Control Systems II 1 2 Measurement and Control Systems II
Module: Recombinant Protein TechnologiesRoot module: Elective Module 1: Production of Therapeutic ProteinsSemester: 6 Course code: S1_MSCII6VO Contact hours per week: 1 ECTS: 2Course Content:- Principles of control technology
- User software applications for control systems: analogue and digital signals, analogue-to-digital and digital-to-analogue converters, microcontrollers, control systems (programmable controllers); incl. independent programming and testing
- Process control technology theory: the individual components and functions of a biotechnology process control system
Course outcome:Upon completion of this course students are able to:
- analyse control systems and apply them to new situations,
- create and use control and regulation algorithms.
Pharmaceutical Protein Production Systems 1 2 Pharmaceutical Protein Production Systems
Module: Recombinant Protein TechnologiesRoot module: Elective Module 1: Production of Therapeutic ProteinsSemester: 6 Course code: S1_PPPS6VO Contact hours per week: 1 ECTS: 2Course Content:- The components of a biotechnology facility, and their installation, commissioning and correct operation
- Biotechnology production processes illustrated using examples of selected microbial production systems (E. coli, yeasts) and eukaryotic production systems (CHO)
Course outcome:Upon completion of this course students are able to:
- apply and analyse biotechnology processes,
- explain biotechnology production facilities,
Regulatory Environment for Biopharmaceuticals 1 2 Regulatory Environment for Biopharmaceuticals
Module: Recombinant Protein TechnologiesRoot module: Elective Module 1: Production of Therapeutic ProteinsSemester: 6 Course code: S1_REB6VO Contact hours per week: 1 ECTS: 2Course Content:- Special regulatory requirements in manufacturing of biopharmaceuticals
- The nature and regulatory aspects of biopharmaceuticals for human use, including basics of regulatory toxicology testing
- Establishing a robust manufacturing process for biopharmaceuticals in a highly regulated environment: Drug substance manufacturing, control strategies, setting specifications, stability testing
- Development of special groups of medicinal products: Biosimilars, Blood Products, Vaccines, Veterinary products, Herbal and Homeopathic Medicinal Products
- Regulatory considerations on Advanced Therapy Medicinal Products and further modalities
Course outcome:Upon completion of this course students are able to:
- explain the regulatory environment in the approval of modern biopharmaceuticals,
- understand the concept of biosimilars.
Validation and Biomaterials Introduction to Validation 1 2 Introduction to Validation
Module: Validation and BiomaterialsRoot module: Elective Module 1: Production of Therapeutic ProteinsSemester: 6 Course code: S1_IIV6VO Contact hours per week: 1 ECTS: 2Course Content:- Fundamentals of validation: legal principles, validation pyramid, equipment qualification (IQ, OQ, PQ)
- Basics of test validation (e.g. sensitivity, reproducibility and robustness)
- Basics of facility validation including an exercise involving the preparation of user requirements specifications and functional specifications
Course outcome:Upon completion of this course students are able to:
- explain and use standard terminology such as qualification and validation in the biotechnology industry,
- explain and apply fundamentals of validation.
Elective Module 2: Drug Development Management Journal Club for Current Issues Journal Club for Current Issues 1 2 Journal Club for Current Issues
Module: Journal Club for Current IssuesRoot module: Elective Module 2: Drug Development ManagementSemester: 6 Course code: S2_JCCI6SE Contact hours per week: 1 ECTS: 2Course Content:- Literature search on the latest trends in the relevant field
- Reviewing relevant literature
- Presenting results of the literature review
- Discussion of contents of the selected literature
Course outcome:Upon completion of this course students are able to:
- structure and analyse scientific articles in their specialist field and use them for their thesis,
- apply literature research in the relevant field.
Management and Marketing Principles of Management and Marketing 2 3 Principles of Management and Marketing
Module: Management and MarketingRoot module: Elective Module 2: Drug Development ManagementSemester: 6 Course code: S2_PMM6VO Contact hours per week: 2 ECTS: 3Course Content:- Business objectives and principles
- Economics (market structures, legal framework)
- Marketing (market analyses, market strategies)
- Management and human resource management
- Management principles
- Recruitment and training
- Accounting and management control
- Financing, procurement, production
- Operational management
Course outcome:Upon completion of this course students are able to:
- explain and implement marketing strategies in the pharmaceutical industry,
- apply theoretical marketing knowledge in practice-related situations,
- anaylse relationships in complex decision-making scenarios and develop effective courses of action as part of a team,
- illustrate and analyse competition between rival companies,
- explain and apply the basics of strategic marketing planning.
Biomedical Regulations Clinical Studies and GCP 1 3 Clinical Studies and GCP
Module: Biomedical RegulationsRoot module: Elective Module 2: Drug Development ManagementSemester: 6 Course code: S2_CLG6VO Contact hours per week: 1 ECTS: 3Course Content:- Pharmacovigilance, drug safety
- Informed consent
- Drug development
- Documentation
Course outcome:Upon completion of this course students are able to:
- carry out independent critical evaluation of the design and execution of clinical trials,
- apply the fundamental principles of good clinical practice (GCP) in line with international standards, as well as basic principles of quality and project management.
Drug Regulatory Affairs 1 2 Drug Regulatory Affairs
Module: Biomedical RegulationsRoot module: Elective Module 2: Drug Development ManagementSemester: 6 Course code: S2_DRA6VO Contact hours per week: 1 ECTS: 2Course Content:- Approval of a new product
- Efficacy, safety and patient information
- Labelling of packaging
- Maintaining approval
- Required documentation, options for making changes to approvals
Course outcome:Upon completion of this course students are able to:
- explain and apply domestic and international regulatory frameworks for the approval of drugs and medical products,
- illustrate the content of a marketing approval dossier,
- explain and apply product information and labelling guidelines.
Scientific Methods and Tools Bachelor Paper and Bachelor Exam Bachelor Seminar II and Bachelor Paper 1 8 Bachelor Seminar II and Bachelor Paper
Module: Bachelor Paper and Bachelor ExamRoot module: Scientific Methods and ToolsSemester: 6 Course code: BAII6BASE Contact hours per week: 1 ECTS: 8Course Content:- Composing the bachelor paper based on the research proposal
- Preparation of bachelor paper including project planning
- Topic-focused literature research
- Applying content-related and academic requirements
- Presentation of selected chapters
Course outcome:Upon completion of this course students are able to:
- independently generate an academic paper in accordance with content-related and formal academic requirements,
- critically analyse selected chapters of their paper and their significance,
- discuss the applicability of the results to other cases and questions.
Bachelor Exam 0 2 Bachelor Exam
Module: Bachelor Paper and Bachelor ExamRoot module: Scientific Methods and ToolsSemester: 6 Course code: BEX6AP Contact hours per week: 0 ECTS: 2Course Content:- Presentation of bachelor paper (and project),
- Oral examination on the bachelor paper (in accordance with section 16 Fachhochschul-Studiengesetz [University of Applied Sciences Studies Act]), and the
- links to related subjects on the curriculum (in accordance with section 16 University of Applied Sciences Studies Act).
Course outcome:Upon completion of this course students are able to:
- present their bachelor paper and the question they addressed in a manner appropriate to the target audience, and defend the paper before an expert committee,
- examine the significance of the findings for professional practice and research, and present supporting arguments,
- answer follow-up questions on degree-programme subjects and the links between them, and justify their answers.
Pharmaceutical Sciences Pharmacology 2 4 Pharmacology
Module: Pharmaceutical SciencesRoot module: Pharmaceutical SciencesSemester: 6 Course code: PHM6VO Contact hours per week: 2 ECTS: 4Course Content:- Pharmacokinetics
- Pharmacodynamics
- Pharmacology of the autonomic nervous system
- Antimicrobial substances
- Antiviral substances
- Chemotherapy
- Allergies and asthma
- Coagulation
- Cardiovascular pharmacology
- Steroid hormones
- Metabolic syndrome
Course outcome:- explain the interaction of substances with cells and tissue,
- explain how medications interfere with signalling pathways in order to produce a therapeutic effect,
- explain unwanted side effects of medications,
- explain the administration, spread, excretion, decomposition and toxicity of medications in the human body,
- differentiate between various categories of substances and mechanisms of action.
Current Issues in Molecular Medicine 1 1 Current Issues in Molecular Medicine
Module: Pharmaceutical SciencesRoot module: Pharmaceutical SciencesSemester: 6 Course code: CIMM6SE Contact hours per week: 1 ECTS: 1Course Content:External specialists will be invited to speak about current issues in molecular medicine, giving an insight into their specialist area and working environment.
Course outcome:Upon completion of this course students are able to use practical examples from research and industry to evaluate and solve problems associated with substance development.
Material Science and Biomaterials 1 2 Material Science and Biomaterials
Module: Pharmaceutical SciencesRoot module: Pharmaceutical SciencesSemester: 6 Course code: S1_MSB6VO Contact hours per week: 1 ECTS: 2Course Content:- Classification of chemical substances, general materials science and the properties of materials
- Material selection for specific facilities and pieces of equipment
- Biocompatibility of materials
- Metals and their applications in process technology
- Plastics and their applications in process technology
Course outcome:Upon completion of this course students are able to:
- explain biopharmaceutical quality documentation and use documentation for new requirements,
- analyse the properties of materials and select the correct materials for a specific task.
Project Management Project Management in Life Sciences 2 3 Project Management in Life Sciences
Module: Project ManagementRoot module: Project ManagementSemester: 6 Course code: PM6VO Contact hours per week: 2 ECTS: 3Course Content:- Projects: targets, focal points, structural plan, definition of work packages, cost budgeting and environmental analysis
- Corporate organisational structures
- Project controlling
- Project reporting and closing
- Project scorecard
- Final project report
- Crises in projects
- Good Clinical Practice
Course outcome:Upon completion of this course students are able to:
- plan, manage and implement projects in an international environment,
- plan and execute tasks in the complex, interdisciplinary setting of the pharmaceuticals industry,
- plan / generate and evaluate a set-up for the implementation of clinical trials, and assess the regulations that underlie them.
Besonderheiten
Warum sollten Sie sich für das Medical and Pharmaceutical Biotechnology in Krems entscheiden?
Der Bachelor-Studiengang „Medical and Pharmaceutical Biotechnologie“ ist weltweit einer der breitesten Biotechnologiestudiengänge in der roten Biotechnologie und daher mit vielen internationalen Master-Studiengängen im biomedizinischen Bereich kompatibel.
Aufgrund der zahlreichen Forschungsprojekte fließen immer wieder aktuelle Themen der internationalen Forschung in den Lehrplan ein und im Zuge von Forschungsprojekten werden auch Bachelor- und Master-Arbeiten am Institut für Biotechnologie verfasst.
International studieren und arbeiten
Mit Ihrem englischsprachigen und praxisorientierten Bachelor-Studium legen Sie den Grundstein für eine internationale Karriere. Die Hälfte der Vorlesungen und Übungen werden von Lehrenden mit Erfahrungen im Forschungs- oder Wirtschaftsbereich gehalten. Viele davon kommen von bekannten Universitäten, führenden Forschungsinstitutionen und Forschungsunternehmen in Österreich und 22 anderen Ländern.
Unsere Hochschule hat viele Forschungskooperationen, darunter einige der Top-Universitäten auf dem Gebiet der Biotechnologie: Karolinska Institute in Stockholm, Harvard University, Garvan Institute in Sydney und weitere 300 weltweit. Diese guten Beziehungen ermöglichen Ihnen vielfältige Chancen des Austausches und der internationalen Erfahrungen.
Ein weiteres Highlight: Das Institut organisiert jährlich eine wissenschaftliche Konferenz. Internationale Sprecher aus Forschung und Industrie interagieren mit unseren Studierenden und Alumni.
Im Labor: Übung macht den Meister
Das Erlernen von praktischen Fähigkeiten – die Laborpraxis – ist neben der Vermittlung theoretischer Grundlagen eines der wichtigsten Ziele unserer Fachhochschulausbildung. Laborübungen gibt es ab dem 1. Semester. Wichtig: Alle Studierenden haben einen garantierten Laborplatz in den State-of-the-Art Mikrobiologie- und Molekularbiologielabors sowie Chemie- und Physiklabors.
Sowohl das Erlernen der Grundfertigkeiten im Labor als auch das Beherrschen der gängigen Standardmethoden aus Forschung, Analytik und Produktion stehen auf dem Programm. Laborübungen finden in medizinischen Grundlagen und Biologie, Analytik, Biotechnologie, Bioprozesstechnologie und Qualitätsmanagement statt.
Das Praktikumssemester ermöglicht Ihnen darüber hinaus noch weitere praktische Erfahrungen und Einblicke in den Forschungs- und Arbeitsalltag.
Ausgezeichnete Karriereaussichten
Als Absolventin oder Absolvent haben Sie hervorragende Karrieremöglichkeiten in der Pharmaindustrie, bei Technologieunternehmen und in Forschungsinstituten der Krebs- und Stammzellforschung, in der regenerativen Medizin, Arzneimittelentwicklung und Bioverfahrenstechnik.
Ihre Fähigkeiten umfassen die Qualitätskontrolle und Marketing sowie die Entwicklung, Produktion und Zulassung von Biotechnologien für Diagnostik und Therapie. Die perfekte Vorbereitung für zukunftsorientierte Jobs!
Newsletter & Infomaterial
Zusätzliche Informationen gefällig? Abonnieren Sie Ihren personalisierten Newsletter oder bestellen Sie Broschüren über unsere Studiengänge direkt zu sich nach Hause.
Jetzt zusätzliche Informationen anfordernKompetenzbereiche
Nach Abschluss dieses Bachelor-Studiums verfügen Sie neben fundierten fachlichen und wissenschaftlichen Fähigkeiten auch über sehr gute praktische Fertigkeiten.
Biotechnologie versetzt Sie in die Lage, Probleme zu lösen, auf die in der Medizin bis heute keine befriedigenden Antworten gefunden wurden. Die Entwicklung von Antikörpern für die Arthritis-Therapie oder die neuen Technologien zur Hauttransplantation und Knorpelzüchtung haben die Lebensqualität von Millionen Patientinnen und Patienten weltweit entscheidend verbessert. Dies sind nur die ersten herausragenden Erfolge einer noch jungen Disziplin.
Im Bachelor-Studium entwickeln Sie Ihre Fachkompetenz auf dem Gebiet der Medical and Pharmaceutical Biotechnology. Sie erlernen die Eigenschaften technischer und biologischer Materialien sowie deren Interaktionen, die Grundlagen der Elektrotechnik, Messtechnik in der Bioprozesstechnologie, Steuer- und Regeltechnik sowie des Anlagenbaus und der Prozessentwicklung in der Industrie. Somit sind Sie gerüstet für das praktische Arbeiten in Industrie und Forschung.
Forschung hat in Medical and Pharmaceutical Biotechnology einen sehr hohen Stellenwert. Deswegen vermitteln wir Ihnen die wissenschaftlichen Kompetenzen, um Forschungsprozesse nachvollziehen und erfolgreich mitgestalten zu können.
Während Ihres Studiums erlangen Sie fundierte Kenntnisse des Qualitätsmanagements, hier beispielswiese die gesetzlichen Bestimmungen in der pharmazeutischen Industrie, die Reinraumschulung für die richtige Arbeitsweise im Reinraum und das Reinraum-Monitoring.
Die medizinische und pharmazeutische Biotechnologie ist grundsätzlich ein sehr disziplinenübergreifender Fachbereich. So werden auch Erkenntnisse aus der Mikrobiologie, Biochemie, Molekularbiologie, Genetik, Bioinformatik, den Ingenieurwissenschaften und der Verfahrenstechnik berücksichtigt.
Interdisziplinäres Zusammenarbeiten und Denken wird Sie also auch in Ihrem Arbeitsalltag begleiten und wird daher bereits im Studium stark gefördert.
Karrierewege nach dem Bachelor-Studium Medical and Pharmaceutical Biotechnology
Nach dem Studium haben Sie hervorragende Jobaussichten durch die Ausbildung in enger Abstimmung mit Industrie und Forschung.
Absolventinnen und Absolventen des Studienganges Medical and Pharmaceutical Biotechnology sind aufgrund ihrer interdisziplinären Ausbildung und des einzigartigen Fähigkeitenprofils gefragte Arbeitskräfte.
Nach dem Studium haben Sie die Wahl: Entweder Sie entscheiden sich für den direkten Berufseinstieg oder für ein aufbauendes Master-Studium. Unser Tipp: unser Master-Studium Medical and Pharmaceutical Biotechnology, das perfekt auf die Inhalte des Bachelor-Studiums aufbaut.
Selbstverständlich steht Ihnen nach Ihrem Abschluss auch jedes andere aufbauende Master-Studium im In- oder Ausland offen.
- Mögliche Arbeitsbereiche
- Biotechnologische Produktion & biotechnologische Prozessentwicklung
- Arbeit im biomedizinischen Routinelabor oder im anwendungsorientierten Forschungslabor
- Qualitätssicherung von Verfahren und Produkten
- Zulassung, Marketing und Vertrieb von Arzneimitteln
- Prüfung & Zulassung von biotechnologischen Produkten in Behörden und Dienstleistungseinrichtungen
Es gibt viele Gründe, warum wir auf unsere Hochschule stolz sind. Finden Sie heraus, was uns besonders macht.
Was Krems besonders lebenswert macht? Lernen Sie Krems als Studierenden-Stadt kennen.
Von Studiumsorganisation bis Praktikums- und Berufsberatung. Informieren Sie sich über das Plus an Services.
Brauchen Sie Hilfe bei der Entscheidung fürs Studium? Unsere Studienberatung berät Sie gerne in einem persönlichen Gespräch.
Im Fokus: Medical and Pharmaceutical Biotechnology
Klicken Sie sich durch die Videos des Studiengangs.
Info-Veranstaltungen
Unser Team
Lernen Sie das Kern-Team des Bachelor-Studiengangs Medical and Pharmaceutical Biotechnology kennen.
Prof.(FH) Priv.-Doz. Mag. Dr. Harald Hundsberger
Institutsleitung Biotechnologie / Studiengangsleitung Medical and Pharmaceutical Biotechnology
Institut Biotechnologie
- Heterologe Experssion von Proteinen, Zellkultursysteme, Zellkulturmodelle, Peptidengineering
- Produktentwicklung in der Life Science Branche, Projektleitung und Projektmanagement
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
-
Immobilisierung von Kameloidantikörper für therapeutische Apherese und für die Unterstützung von Dialyse
Projektleitung, Department of Science & Technology
-
Extrazelluläre Vesikel aus dem Hoffa-Fettkörper - ein neuer Ansatz der Knorpelregeneration?
Department of Science & Technology
-
Optogenetische Krebsmodelle
Projektleitung, Department of Science & Technology
-
Testung von rekombinanten polyklonalen Antikörperfragmenten gegen Gluten-Peptide
Projektleitung, Department of Science & Technology
-
Die Rolle von NFR2 in der Melanomprogression - Einblicke in die Mechanismen von Metastasen
Projektleitung, Department of Science & Technology
-
Etablierung der molekularen Toxikologie für rasche, frühzeitige sowie sensitive Toxizitätsbestimmungen und Biokompatibilität
Projektleitung, Department of Science & Technology
-
Entwicklung einer Design-Pipeline für innovative Protein-Protein-Interaktionshemmer
Department of Science & Technology
-
MEMESA – Metastasierendes Melanom Spezifische Antikörper
Projektleitung, Department of Science & Technology
-
AdsorbTech: Entwicklung einer neuen Technologieplattform für Peptid-basierte therapeutische Apheresesysteme
Projektleitung, Department of Science & Technology
-
Entwicklung neuer immunregulierender Peptide und geschlechtsspezifischer organotypischer Zellmodelle für humane Sepsis
Department of Science & Technology
-
Entwicklung neuer Methoden zur Verbesserung von immuntherapeutischen Verfahren in der Onkologie
Department of Science & Technology
-
Funktionale Validierung prädiktiver Biomarker für zielgerichtete Krebstherapien
Department of Science & Technology
-
Etablierung innovativer, vaskulärer Äquivalente zur Entwicklung von Detektionsmodulen für Hochdurchsatz-Verfahren und zur Entwicklung von anti-entzündlichen Peptiden
Projektleitung, Department of Science & Technology
-
Etablierung innovativer humaner Tumor-Mimetika für das Screening von bioaktiven Wirkstoffen
Department of Science & Technology
-
Biopharm - Isolation bioaktiver Stoffe aus Cyanobakterien
Projektleitung, Department of Science & Technology
-
Zellbasierte Testsysteme für bioaktive Substanzen
Projektleitung, Department of Science & Technology
Colleselli, K., Ebeyer-Masotta, M., Neuditschko, B., Stierschneider, A., Pollhammer, C., Potocnjak, M., Hundsberger, H., Herzog, F., Wiesner, C. (2023): Beyond Pattern Recognition: TLR2 Promotes Chemotaxis, Cell Adhesion, and Migration in THP-1 Cells. Cells, 12(10): 1425.
Doi: https://doi.org/10.3390/cells12101425Stierschneider, A., Neuditschko, B., Colleselli, K., Hundsberger, H., Herzog, F., & Wiesner, C. (2023): Comparative and Temporal Characterization of LPS and Blue-Light-Induced TLR4 Signal Transduction and Gene Expression in Optogenetically Manipulated Endothelial Cells. Cells, 12(697).
Doi: https://doi.org/10.3390/cells12050697Lucas, R., Hadizamani, Y., Enkhbaatar, P., Csanyi, G., Caldwell, R. W., Hundsberger, H., Sridhar, S., Lever, A. A., Hudel, M., Ash, D., Ushio-Fukai, M., Fukai, T., Chakraborty, T., Verin, A., Eaton, D. C., Romero, M., & Hamacher, J. (2022): Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Frontiers in Physiology, 12: 793251.
Doi: https://doi.org/10.3389/fphys.2021.793251Weitzenböck, HP., Gschwendtner, A., Wiesner, C., Depke, M., Schmidt, F., Trautinger, F., Hengstschläger, M., Hundsberger, H., Mikula, M. (2022): Proteome analysis of NRF2 inhibition in melanoma reveals CD44 up-regulation and increased apoptosis resistance upon vemurafenib treatment. Cancer Medicine, 11(4): 956-967.
Doi: https://doi.org/10.1002/cam4.4506Stierschneider, A., Grünstäudl, P., Colleselli, K., Atzler, J., Klein, C., Hundsberger, H., Wiesner, C. (2021): Light-Inducible Spatio-Temporal Control of TLR4 and NF-κB-Gluc Reporter in Human Pancreatic Cell Line. International Journal of Molecular Sciences, 22(17): 9232.
Doi: https://doi.org/10.3390/ijms22179232Hundsberger, H., Stierschneider, A., Sarne, V., Ripper, D., Schimon, J., Weitzenböck, H. P., Schild, D., Jacobi, N., Eger, A., Atzler, J., Klein, C. T., & Wiesner, C. (2021): Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Molecules (Basel, Switzerland), 26(3): 717.
Doi: https://doi.org/10.3390/molecules26030717Kinslechner, K., Schütz, B., Pistek, M., Rapolter, P., Weitzenböck, H. P., Hundsberger, H., Mikulits, W., Grillari, J., Röhrl, C., Hengstschläger, M., Stangl, H., & Mikula, M. (2019): Loss of SR-BI Down-Regulates MITF and Suppresses Extracellular Vesicle Release in Human Melanoma. International journal of molecular sciences, 20(5): 1063.
Doi: https://doi.org/10.3390/ijms20051063Jacobi, N., Seeboeck, R., Hofmann, E., Schweiger, H., Smolinska, V., Mohr, T., Boyer, A., Sommergruber, W., Lechner, P., Pichler-Huebschmann, C., Önder, K., Hundsberger, H., Wiesner, C., & Eger, A. (2017): Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget, 8(64): 107423–107440.
Doi: https://doi.org/10.18632/oncotarget.22475Hundsberger, H., Önder, K., Schuller-Götzburg, P., Virok, D. P., Herzog, J., & Rid, R. (2017): Assembly and use of high-density recombinant peptide chips for large-scale ligand screening is a practical alternative to synthetic peptide libraries. BMC genomics, 18(1): 450.
Doi: https://doi.org/10.1186/s12864-017-3814-3Jacobi, N., Smolinska, V., Seeboeck, R., Stierschneider, A., Klein, C., Hofmann, E., Wiesner, C., Mohr, T., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2017): 3D Anti-Cancer drug discovery models: A promising approach for precision medicine. In IMC Fachhochschule Krems GmbH (Hrsg.), Online-Tagungsband FHK Forschungsforum 2017. Krems: FFH.
Hundsberger, H., Koppensteiner, A., Hofmann, E., Ripper, D., Pflüger, M., Stadlmann, V., Klein, C. T., Kreiseder, B., Katzlinger, M., Eger, A., Forster, F., Missbichler, A., & Wiesner, C. (2017): A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells. SLAS discovery : advancing life sciences R & D, 22(8): 1035–1043.
Doi: https://doi.org/10.1177/2472555217697435Volk, K., Breunig, S. D., Rid, R., Herzog, J., Bräuer, M., Hundsberger, H., Klein, C., Müller, N., & Önder, K. (2017): Structural analysis and interaction studies of acyl-carrier protein (acpP) of Staphylococcus aureus, an extraordinarily thermally stable protein. Biological chemistry, 398(1): 125-133.
Doi: https://doi.org/10.1515/hsz-2016-0185Schütz, B., Koppensteiner, A., Schörghofer, D., Kinslechner, K., Timelthaler, G., Eferl, R., Hengstschläger, M., Missbichler, A., Hundsberger, H., & Mikula, M. (2016): Generation of metastatic melanoma specific antibodies by affinity purification. Scientific reports, 6: 37253.
Doi: https://doi.org/10.1038/srep37253Al-Harthy, T., Zoghaib, W. M., Pflüger, M., Schöpel, M., Önder, K., Reitsammer, M., Hundsberger, H., Stoll, R., & Abdel-Jalil, R. (2016): Design, Synthesis, and Cytotoxicity of 5-Fluoro-2-methyl-6-(4-aryl-piperazin-1-yl) Benzoxazoles. Molecules, 21(10): 1290.
Doi: https://doi.org/10.3390/molecules21101290Al-Harthy, T., Abdel-Jalil, R., Zoghaib, W., Pflüger, M., Hofmann, E., & Hundsberger, H. (2016): Design and synthesis of benzothiazole schiff bases of potential antitumor activity. Heterocycles, 92(7): 1282-1292.
Doi: https://doi.org/10.3987/COM-16-13471Hofmann, E., Seeboeck, R., Jacobi, N., Obrist, P., Huter, S., Klein, C., Oender, K., Wiesner, C., Hundsberger, H., & Eger, A. (2016): The combinatorial approach of laser-captured microdissection and reverse transcription quantitative polymerase chain reaction accurately determines HER2 status in breast cancer. Biomarker research, 7(4): 8.
Doi: https://doi.org/10.1186/s40364-016-0062-7Jacobi, N., Smolinska, V., Stierschneider, A., Klein, C., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2016): Development of organotypic cancer models for the identification of individualized cancer therapies. In FH des BFI Wien (Hrsg.), Online-Tagungsband FHK Forschungsforum 2016. Wien: FFH.
Herzog, J., Rid, R., Wagner, M., Hundsberger, H., Eger, A., Bauer, J., & Önder, K. (2015): Whole-transcriptome gene expression profiling in an epidermolysis bullosa simplex Dowling-Meara model keratinocyte cell line uncovered novel, potential therapeutic targets and affected pathways. BMC research notes, 8: 785.
Doi: https://doi.org/10.1186/s13104-015-1783-7Kreiseder, B., Holper-Schichl, Y. M., Muellauer, B., Jacobi, N., Pretsch, A., Schmid, J. A., de Martin, R., Hundsberger, H., Eger, A., & Wiesner, C. (2015): Alpha-catulin contributes to drug-resistance of melanoma by activating NF-κB and AP-1. PloS one, 10(3): e0119402.
Doi: https://doi.org/10.1371/journal.pone.0119402Pretsch, A., Nagl, M., Schwendinger, K., Kreiseder, B., Wiederstein, M., Pretsch, D., Genov, M., Hollaus, R., Zinssmeister, D., Debbab, A., Hundsberger, H., Eger, A., Proksch, P., & Wiesner, C. (2014): Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PloS one, 9(6): e97929.
Doi: https://doi.org/10.1371/journal.pone.0097929Rid, R., Hundsberger, H., & Onder, K. (2014): Compound screening and transcriptional profiling in human primary keratinocytes: a brief guideline. Methods in molecular biology, 1195: 99-109.
Doi: https://doi.org/10.1007/7651_2013_50Kapuścik, A., Hrouzek, P., Kuzma, M., Bártová, S., Novák, P., Jokela, J., Pflüger, M., Eger, A., Hundsberger, H., Kopecký, J. (2013): Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent. Chembiochem : a European journal of chemical biology, 14(17): 2329-2337.
Doi: https://doi.org/10.1002/cbic.201300246Rid, R., Herzog, J., Maier, R. H., Hundsberger, H., Eger, A., Hintner, H., Bauer, J. W., Onder, K. (2013): Real-time monitoring of relative peptide-protein interaction strengths in the yeast two-hybrid system. Assay and drug development technologies, 11(4): 269-275.
Doi: https://doi.org/10.1089/adt.2012.496Rid, R., Wagner, M., Maier, C. J., Hundsberger, H., Hintner, H., Bauer, J. W., & Onder, K. (2013): Deciphering the calcitriol-induced transcriptomic response in keratinocytes: presentation of novel target genes. Journal of molecular endocrinology, 50(2): 131–149.
Doi: https://doi.org/10.1530/JME-11-0191Kreiseder, B., Orel, L., Bujnow, C., Buschek, S., Pflueger, M., Schuett, W., Hundsberger, H., de Martin, R., Wiesner, C. (2013): α‐Catulin downregulates E‐cadherin and promotes melanoma progression and invasion. International journal of cancer, 132(3): 521-530.
Doi: https://doi.org/10.1002/ijc.27698Pflüger, M., Kapuscik, A., Lucas, R., Koppensteiner, A., Katzlinger, M., Jokela, J., Eger, A., Jacobi, N., Wiesner, C., Hofmann, E., Onder, K., Kopecky, J., Schütt, W., Hundsberger, H. (2013): A combined impedance and AlphaLISA-based approach to identify anti-inflammatory and barrier-protective compounds in human endothelium. Journal of biomolecular screening, 18(1): 67-74.
Doi: https://doi.org/10.1177/1087057112458316Khare, V., Lyakhovich, A., Dammann, K., Lang, M., Borgmann, M., Tichy, B., Pospisilova, S., Luciani, G., Campregher, C., Evstatiev, R., Pflueger, M., Hundsberger, H., & Gasche, C. (2013): Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1. Biochemical Pharmacology, 85(2): 234-244.
Doi: https://doi.org/10.1016/j.bcp.2012.10.026Maier, C., Maier, R., Rid, R., Trost, A., Hundsberger, H., Eger, A., Hintner, H., Bauer, J., Onder, K. (2012): PIM-1 kinase interacts with the DNA binding domain of the vitamin D receptor: a further kinase implicated in 1,25-(OH)2D3 signaling. BMC molecular biology, 13: 18.
Doi: https://doi.org/10.1186/1471-2199-13-18Amatschek, S., Lucas, R., Eger, A., Pflueger, M., Hundsberger, H., Knoll, C., Grosse-Kracht, S., Schuett, W., Koszik, F., Maurer, D., Wiesner, C. (2011): CXCL9 induces chemotaxis, chemorepulsion and endothelial barrier disruption through CXCR3-mediated activation of melanoma cells. British journal of cancer, 104(3): 469-479.
Doi: https://doi.org/10.1038/sj.bjc.6606056Hundsberger, H., Verin, A., Wiesner, C., Pflüger, M., Dulebo, A., Schütt, W., Lasters, I., Männel, D., Wendel, A., Lucas, R. (2008): TNF: a moonlighting protein at the interface between cancer and infection. Frontiers in Bioscience, 13: 5374-86.
Doi: https://doi.org/10.2741/3087Hundsberger, H., Verin, A., Wiesner, C., Pflüger, M., Dulebo, A., Schütt, W., Lasters, I., Männel, D. N., Wendel, A., & Lucas, R. (2008): TNF: a moonlighting protein at the interface between cancer and infection. Frontiers in bioscience : a journal and virtual library, 13: 5374–5386.
Doi: https://doi.org/10.2741/3087Wiesner, C., Pflueger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schuett, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene interdisziplinar, 3(1).
Wiesner, C., Pflüger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schütt, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene Interdisziplinär, 3(1): Doc05.
Wiesner, C., Lucas, R., Pflueger, M., Kleber, C., Kopecky, J., Stys, D., Entler, B., Hundsberger, H., Atzler, J., Hrouzek, P., Lukesova, A., Schuett, W., (2007): Endothelial Cell-Based Methods for the Detection of Cyanobacterial Anti- Inflammatory and Wound-Healing Promoting Metabolites. Drug Metabolism Letters, 1(4): 254-260.
Doi: https://doi.org/10.2174/187231207783221385Lucas, R., Hundsberger, H., Pflueger, M., Fischer, B., Morel, D., Braun, C., Wendel, A., Chakraborty, T., Schuett, W., Wiesner, C., Hamacher, J. (2007): The Tumor Necrosis Factor-Derived TIP Peptide: A Potential Anti-Edema Drug. Letters in Drug Design & Discovery, 4(5): 336-340.
Doi: https://doi.org/10.2174%2F157018007780867816
Prof.(FH) Priv.-Doz. Mag. Dr. Harald HundsbergerInstitutsleitung Biotechnologie / Studiengangsleitung Medical and Pharmaceutical BiotechnologyInstitutsleitung Biotechnologie / Studiengangsleitung Medical and Pharmaceutical Biotechnology
Prof.(FH) Priv.-Doz. Mag. Dr. Harald Hundsberger
Kernkompetenzen
- Heterologe Experssion von Proteinen, Zellkultursysteme, Zellkulturmodelle, Peptidengineering
- Produktentwicklung in der Life Science Branche, Projektleitung und Projektmanagement
DI (FH) Anita Koppensteiner
Scientist Institut Applied Chemistry
Institut Applied Chemistry
- Protein Produktion, Aufreinigung und Analyse
- Zellbasierte Testsysteme/Mikroskopie
- Biochemische Testmethoden und Analysen
- Applied ChemistryBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
-
Anwendung von Hydroxytyrosol zur Stabilisierung
Department of Science & Technology
-
Theraferm
Department of Science & Technology
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Department of Science & Technology
-
Die Rolle von NFR2 in der Melanomprogression - Einblicke in die Mechanismen von Metastasen
Department of Science & Technology
-
Extremophiles
Department of Science & Technology
-
MEMESA – Metastasierendes Melanom Spezifische Antikörper
Department of Science & Technology
-
AdsorbTech: Entwicklung einer neuen Technologieplattform für Peptid-basierte therapeutische Apheresesysteme
Department of Science & Technology
-
Etablierung innovativer, vaskulärer Äquivalente zur Entwicklung von Detektionsmodulen für Hochdurchsatz-Verfahren und zur Entwicklung von anti-entzündlichen Peptiden
Department of Science & Technology
Rassy, W., Ripper, D., Pomare, E., Winkler, S., Koppensteiner, A., Spadiut O.,Schild, D. (2023): Incorporation of ionic rare earth elements as a form of microbial environmental remediation. Frontiers in Environmental Science, 11(Section Toxicology, Pollution and the Environment).
Doi: https://doi.org/10.3389/fenvs.2023.1112612Hundsberger, H., Koppensteiner, A., Hofmann, E., Ripper, D., Pflüger, M., Stadlmann, V., Klein, C. T., Kreiseder, B., Katzlinger, M., Eger, A., Forster, F., Missbichler, A., & Wiesner, C. (2017): A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells. SLAS discovery : advancing life sciences R & D, 22(8): 1035–1043.
Doi: https://doi.org/10.1177/2472555217697435Schütz, B., Koppensteiner, A., Schörghofer, D., Kinslechner, K., Timelthaler, G., Eferl, R., Hengstschläger, M., Missbichler, A., Hundsberger, H., & Mikula, M. (2016): Generation of metastatic melanoma specific antibodies by affinity purification. Scientific reports, 6: 37253.
Doi: https://doi.org/10.1038/srep37253Pflüger, M., Kapuscik, A., Lucas, R., Koppensteiner, A., Katzlinger, M., Jokela, J., Eger, A., Jacobi, N., Wiesner, C., Hofmann, E., Onder, K., Kopecky, J., Schütt, W., Hundsberger, H. (2013): A combined impedance and AlphaLISA-based approach to identify anti-inflammatory and barrier-protective compounds in human endothelium. Journal of biomolecular screening, 18(1): 67-74.
Doi: https://doi.org/10.1177/1087057112458316
DI (FH) Anita KoppensteinerScientist Institut Applied ChemistryProf.(FH) Dr. Barbara Entler
Fachhochschulprofessorin Institut Biotechnologie
Institut Biotechnologie
- Mikrobiologie
- Mikrobielles Monitoring
- Gentechnik
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
-
EvoFerm
Department of Science & Technology
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Department of Science & Technology
Moritz, B., Locatelli, V., Niess, M., Bathke, A., Kiessig, S., Entler, B., Finkler, C., Wegele, H., & Stracke, J. (2017): Optimization of capillary zone electrophoresis for charge heterogeneity testing of biopharmaceuticals using enhanced method development principles. Electrophoresis, 38(24): 3136–3146.
Doi: https://doi.org/10.1002/elps.201700145Wiesner, C., Pflueger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schuett, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene interdisziplinar, 3(1).
Wiesner, C., Pflüger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schütt, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene Interdisziplinär, 3(1): Doc05.
Wiesner, C., Lucas, R., Pflueger, M., Kleber, C., Kopecky, J., Stys, D., Entler, B., Hundsberger, H., Atzler, J., Hrouzek, P., Lukesova, A., Schuett, W., (2007): Endothelial Cell-Based Methods for the Detection of Cyanobacterial Anti- Inflammatory and Wound-Healing Promoting Metabolites. Drug Metabolism Letters, 1(4): 254-260.
Doi: https://doi.org/10.2174/187231207783221385
Prof.(FH) Dr. Barbara EntlerFachhochschulprofessorin Institut BiotechnologieProf.(FH) DI Bernhard Klausgraber
Fachhochschulprofessor Institut Biotechnologie
Institut Biotechnologie
- Anorganische und Organische Chemie
- Mikrobiologie
- Fermentationsentwicklung und Optimierung
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Department of Science & Technology
-
Synthese und industrielle Verwendung von Hydroxytyrosol
Department of Science & Technology
-
Extremophiles
Projektleitung, Department of Science & Technology
-
Co-Kultivierung von Mikroorganismen
Department of Science & Technology
-
Etablierung innovativer humaner Tumor-Mimetika für das Screening von bioaktiven Wirkstoffen
Department of Science & Technology
Prof.(FH) DI Bernhard KlausgraberFachhochschulprofessor Institut BiotechnologieProf.(FH) Dr. Christian Klein
Fachhochschulprofessor Institut Biotechnologie
Institut Biotechnologie
- Wirkstoffdesign
- Biochemische Systemtheorie
- Molecular Modelling und Chemoinformatik
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
-
EvoFerm
Department of Science & Technology
-
Spike-Fermentation
Department of Science & Technology
-
Entwicklung von therapeutischen Peptiden für Krebs- und regenerative Medizin
Department of Science & Technology
-
Entwicklung einer Design-Pipeline für innovative Protein-Protein-Interaktionshemmer
Projektleitung, Department of Science & Technology
-
Entwicklung neuer immunregulierender Peptide und geschlechtsspezifischer organotypischer Zellmodelle für humane Sepsis
Department of Science & Technology
-
Funktionale Validierung prädiktiver Biomarker für zielgerichtete Krebstherapien
Department of Science & Technology
Stierschneider, A., Grünstäudl, P., Colleselli, K., Atzler, J., Klein, C., Hundsberger, H., Wiesner, C. (2021): Light-Inducible Spatio-Temporal Control of TLR4 and NF-κB-Gluc Reporter in Human Pancreatic Cell Line. International Journal of Molecular Sciences, 22(17): 9232.
Doi: https://doi.org/10.3390/ijms22179232Hundsberger, H., Stierschneider, A., Sarne, V., Ripper, D., Schimon, J., Weitzenböck, H. P., Schild, D., Jacobi, N., Eger, A., Atzler, J., Klein, C. T., & Wiesner, C. (2021): Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Molecules (Basel, Switzerland), 26(3): 717.
Doi: https://doi.org/10.3390/molecules26030717Ablinger, C., Geisler, S. M., Stanika, R. I., Klein, C. T., & Obermair, G. J. (2020): Neuronal α2δ proteins and brain disorders. Pflugers Archiv : European journal of physiology, 472(7): 845-863.
Doi: https://doi.org/10.1007/s00424-020-02420-2Jacobi, N., Smolinska, V., Seeboeck, R., Stierschneider, A., Klein, C., Hofmann, E., Wiesner, C., Mohr, T., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2017): 3D Anti-Cancer drug discovery models: A promising approach for precision medicine. In IMC Fachhochschule Krems GmbH (Hrsg.), Online-Tagungsband FHK Forschungsforum 2017. Krems: FFH.
Hundsberger, H., Koppensteiner, A., Hofmann, E., Ripper, D., Pflüger, M., Stadlmann, V., Klein, C. T., Kreiseder, B., Katzlinger, M., Eger, A., Forster, F., Missbichler, A., & Wiesner, C. (2017): A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells. SLAS discovery : advancing life sciences R & D, 22(8): 1035–1043.
Doi: https://doi.org/10.1177/2472555217697435Volk, K., Breunig, S. D., Rid, R., Herzog, J., Bräuer, M., Hundsberger, H., Klein, C., Müller, N., & Önder, K. (2017): Structural analysis and interaction studies of acyl-carrier protein (acpP) of Staphylococcus aureus, an extraordinarily thermally stable protein. Biological chemistry, 398(1): 125-133.
Doi: https://doi.org/10.1515/hsz-2016-0185Hofmann, E., Seeboeck, R., Jacobi, N., Obrist, P., Huter, S., Klein, C., Oender, K., Wiesner, C., Hundsberger, H., & Eger, A. (2016): The combinatorial approach of laser-captured microdissection and reverse transcription quantitative polymerase chain reaction accurately determines HER2 status in breast cancer. Biomarker research, 7(4): 8.
Doi: https://doi.org/10.1186/s40364-016-0062-7Jacobi, N., Smolinska, V., Stierschneider, A., Klein, C., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2016): Development of organotypic cancer models for the identification of individualized cancer therapies. In FH des BFI Wien (Hrsg.), Online-Tagungsband FHK Forschungsforum 2016. Wien: FFH.
Solca, F., Dahl, G., Zoephel, A., Bader, G., Sanderson, M., Klein, C.T., Kraemer, O., Himmelsbach, F., Haaksma, E., Adolf, G. R. (2012): Target Binding Properties and Cellular Activity of Afatinib (BIBW 2992), an Irreversible ErbB Family Blocker. Journal of Pharmacology and Experimental Therapeutics, 343(2): 342-350.
Doi: https://doi.org/10.1124/jpet.112.197756Klein, C.T., Kaiser, D., Ecker, G. (2004): 3D Topolgical Distance-Based Descriptors for Use in QSAR and Diversity Analysis. Journal of Chemical Information and Computer Sciences, 44(1): 200-209.
Doi: https://doi.org/10.1021/ci0256236Klein, C.T., Kaiser, D., Kopp, S., Chiba, P., Ecker, G. (2002): Similarity-Based SAR as Tool for Early ADME Profiling. Journal of Computer-Aided Molecular Design, 16: 785-793.
Doi: https://doi.org/10.1023/A:1023828527638Klein, C.T., Kaiblinger, N., Wolschann, P. (2002): Internally Defined Distances in 3D-Quantitative Structure-Activity Relationships. Journal of Computer-Aided Molecular Design, 16: 79-93.
Doi: https://doi.org/10.1023/A:1016308417830Mayer, B., Klein, C.T. (2000): Influence of Solvation on the Helix Forming Tendency of Nonpolar Amino Acids. Journal of Molecular Structure: THEOCHEM, 532(1-3): 213-226.
Doi: https://doi.org/10.1016/S0166-1280(00)00559-5Buchbauer, G., Klein, C.T., Wailzer, B., Wolschann, P. (2000): Threshold-Based Structure-Activity Relationships of Pyrazines with Bell Pepper Flavor. Journal of Agricultural and Food Chemistry, 48(9): 4273-4278.
Doi: https://doi.org/10.1021/jf000192hKlein, C.T., Polheim, D., Viernstein, H., Wolschann, P. (2000): A Method for Estimation of the Free Energies of Complexation between ß-Cyclodextrin and Guest Molecules. Journal of Inclusion Phenomena, 36(4): 409-423.
Doi: https://doi.org/10.1023/A:1008063412529Klein, C.T., Pircher, H., Wailzer, B., Buchbauer, G., Wolschann, P. (2000): Quantitative Structure-Property Study on Pyrazines with Bell Peper Flavor. Scientific Pharmaceutica, 68(1): 41-56.
Doi: https://doi.org/10.3797/scipharm.aut-00-04Klein, C.T., Lawtrakul, L., Hannongbua, S., Wolschann, P. (2000): Accessible Charges as Sensitive Descriptors in Structure-Activity Relationships. A Study on HEPT-based HIV-1 RT Inhibitors. Scientific Pharmaceutica, 68(1): 25-40.
Doi: https://doi.org/10.3797/scipharm.aut-00-03Klein, C.T., Viernstein, H., Wolschann, P. (2000): Free Energy Prediction of Complexation between ß-Cyclodextrin and Guest Molecules: External Predictivity of MR and PLS Models. Scientific Pharamaceutica, 68(1): 15-24.
Doi: https://doi.org/10.3797/scipharm.aut-00-02Klein, C.T., Polheim, D., Viernstein, H., Wolschann, P. (2000): Predicting the Free Energies of Complexation between Cyclodextrins and Guest Molecules: Linear versus Nonlinear Models. Pharamaceutical Research, 17: 358-365.
Doi: https://doi.org/10.1023/A:1007565409407Mayer, B., Klein, C.T., Köhler, G. (1999): Selective Assembly of Cyclodextrins on Poly(ethylene oxide) Poly(propylene oxide) Copolymers. Journal of Computer-Aided Molecular Design, 13: 373-383.
Doi: https://doi.org/10.1023/A:1008095501870Klein, C.T., Mayer, B. (1999): Sources for Switches and Structure Formation in Metabolic Pathways. Biosystems, 51(1): 41-52.
Doi: https://doi.org/10.1016/S0303-2647(99)00012-XKlein, C.T., Mayer, B., Köhler, G., Wolschann, P. (1998): Systematic Stepsize Variation: An Efficient Method for Searching the Conformational Space of Polypeptides. Journal of Computational Chemistry, 19(13): 1470-1481.
Doi: https://doi.org/10.1002/(SICI)1096-987X(199810)19:13<1470::AID-JCC4>3.0.CO;2-NKlein, C.T. (1998): Hysteresis-Driven Pattern Formation in Biochemical Networks. Journal of Theoretical Biology, 194(2): 263-274.
Doi: https://doi.org/10.1006/jtbi.1998.0757Mayer, B., Marconi, G., Klein, C.T., Köhler, G., Wolschann, P. (1997): Structural Analysis of Host–Guest Systems. Methyl-substituted Phenols in beta;-Cyclodextrin. Journal of inclusion phenomena and molecular recognition in chemistry, 29: 79-93.
Doi: https://doi.org/10.1023/A:1007920606983Klein, C.T., Mayer, B. (1997): A Model for Pattern Formation in Gap-Junction Coupled Cells. Journal of Theoretical Biology, 186(1): 107-115.
Doi: https://doi.org/10.1006/jtbi.1996.0337Grabner, G., Monti, S., Marconi, G., Mayer, B., Klein, C.T., Köhler, G. (1997): Spectroscopic and Photochemical Study of Inclusion Complexes of Dimethoxybenzenes with Cyclodextrins. The Journal of Physical Chemistry , 100(51): 20068-20075.
Doi: https://doi.org/10.1021/jp962231rMarconi, G., Mayer, B., Klein, C.T., Köhler, G. (1996): The structure of higher order C60-fullerene-γ-cyclodextrin complexes. Chemical Physics Letters, 260(5-6): 589-594.
Doi: https://doi.org/10.1016/0009-2614(96)00915-3Köhler, G., Grabner, G., Klein, C.T., Marconi, G., Mayer, B., Monti, S., Rechthaler, K., Rotkiewicz, K., Viernstein, H., Wolschann, P. (1996): Structure and spectroscopic Properties in Cyclodextrin Inclusion Complexes. In Szejtli, J., Szente, L. (Hrsg.), Proceedings of the Eighth International Symposium on Cyclodextrins (215-220). Budapest, Hungary: Springer, Dordrecht.
Doi: https://doi.org/10.1007/978-94-011-5448-2_46Klein, C.T., Mayer, B., Köhler, G., Wolschann, P. (1996): Influence of solvation on helix formation of poly-alanine studied by multiple annealing simulations. Journal of Molecular Structure: THEOCHEM, 372(1): 33-43.
Doi: https://doi.org/10.1016/S0166-1280(96)04745-8Klein, C. T., & Seelig, F. F. (1995): Turing structures in a system with regulated gap-junctions. Bio Systems, 35(1): 15–23.
Doi: https://doi.org/10.1016/0303-2647(94)01478-pKlein, C.T., Mayer, B., Köhler, G., Mraz, K., Reiter, S., Viernstein, H., Wolschann, P. (1995): Solubility and Molecular Modeling of Triflumizole-ß-cyclodextrin Inclusion Complexes. Journal of inclusion phenomena and molecular recognition in chemistry, 22: 15–32.
Doi: https://doi.org/10.1007/BF00706495
Prof.(FH) Dr. Christian KleinFachhochschulprofessor Institut BiotechnologieProf.(FH) Priv.Doz. Dr. Reinhard Klein
Fachhochschulprofessor Institut Biotechnologie
Institut Biotechnologie
- Virologie
- Molekjularbiologie
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
-
EvoFerm
Department of Science & Technology
-
In-Vivo-RNA Interferenzstrategien gegen Adenoviren
Projektleitung, Department of Science & Technology
-
Virale und fungale Infektionen
Projektleitung, Department of Science & Technology
-
RNA Interferenz als Methode zur Inhibierung von Virusinfektionen
Projektleitung, Department of Science & Technology
Selb, R., Derntl, C., Klein, R., Alte, B., Hofbauer, C., Kaufmann, M., Beraha, J., Schöner, L., & Witte, A. (2017): The Viral Gene ORF79 Encodes a Repressor Regulating Induction of the Lytic Life Cycle in the Haloalkaliphilic Virus ϕCh1. Journal of virology, 91(9): e00206-17.
Doi: https://doi.org/10.1128/JVI.00206-17Derntl, C., Selb, R., Klein, R., Alte, B., & Witte, A. (2015): Genomic manipulations in alkaliphilic haloarchaea demonstrated by a gene disruption in Natrialba magadii. FEMS microbiology letters, 362(21): fnv179.
Doi: https://doi.org/10.1093/femsle/fnv179Derntl, C., Selb, R., Klein, R., Alte, B., & Witte, A. (2015): Genomic manipulations in alkaliphilic haloarchaea demonstrated by a gene disruption in Natrialba magadii. FEMS microbiology letters, 362(21): fnv179.
Doi: https://doi.org/10.1093/femsle/fnv179Bellutti, F., Kauer, M., Kneidinger, D., Lion, T., & Klein, R. (2015): Identification of RISC-associated adenoviral microRNAs, a subset of their direct targets, and global changes in the targetome upon lytic adenovirus 5 infection. Journal of virology, 89(3): 1608–1627.
Doi: https://doi.org/10.1128/JVI.02336-14Bellutti, F., Kauer, M., Kneidinger, D., Lion, T., & Klein, R. (2015): Identification of RISC-associated adenoviral microRNAs, a subset of their direct targets, and global changes in the targetome upon lytic adenovirus 5 infection. Journal of virology, 89(3): 1608–1627.
Doi: https://doi.org/10.1128/JVI.02336-14Ibrišimović, M., Lion, T., & Klein, R. (2013): Combinatorial targeting of 2 different steps in adenoviral DNA replication by herpes simplex virus thymidine kinase and artificial microRNA expression for the inhibition of virus multiplication in the presence of ganciclovir. BMC biotechnology, 13(1): 54.
Doi: https://doi.org/10.1186/1472-6750-13-54Mayrhofer-Iro, M., Ladurner, A., Meissner, C., Derntl, C., Reiter, M., Haider, F., Dimmel, K., Rössler, N., Klein, R., Baranyi, U., Scholz, H., & Witte, A. (2013): Utilization of virus φCh1 elements to establish a shuttle vector system for Halo(alkali)philic Archaea via transformation of Natrialba magadii. Applied and environmental microbiology, 79(8): 2741–2748.
Doi: https://doi.org/10.1128/AEM.03287-12Ibrišimović, M., Kneidinger, D., Lion, T., & Klein, R. (2013): An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs. Antiviral research, 97(1): 10–23.
Doi: https://doi.org/10.1016/j.antiviral.2012.10.008Kneidinger, D., Ibrišimović, M., Lion, T., & Klein, R. (2012): Inhibition of adenovirus multiplication by short interfering RNAs directly or indirectly targeting the viral DNA replication machinery. Antiviral research, 94(3): 195–207.
Doi: https://doi.org/10.1016/j.antiviral.2012.03.011Ibrišimović, M., Nagl, U., Kneidinger, D., Rauch, M., Lion, T., & Klein, R. (2012): Targeted expression of herpes simplex virus thymidine kinase in adenovirus-infected cells reduces virus titers upon treatment with ganciclovir in vitro. The journal of gene medicine, 114(1): 3–19.
Doi: https://doi.org/10.1002/jgm.1638Klein, R., Rössler, N., Iro, M., Scholz, H., & Witte, A. (2012): Haloarchaeal myovirus φCh1 harbours a phase variation system for the production of protein variants with distinct cell surface adhesion specificities. Molecular microbiology, 83(1): 137–150.
Doi: https://doi.org/10.1111/j.1365-2958.2011.07921.xKlein, R., Ruttkowski, B., Schwab, S., Peterbauer, T., Salmons, B., Günzburg, W. H., & Hohenadl, C. (2008): Mouse mammary tumor virus promoter-containing retroviral promoter conversion vectors for gene-directed enzyme prodrug therapy are functional in vitro and in vivo. Journal of biomedicine & biotechnology, 2008(683505 ): 10.
Doi: https://doi.org/10.1155/2008/683505Agu, C. A., Klein, R., Lengler, J., Schilcher, F., Gregor, W., Peterbauer, T., Bläsi, U., Salmons, B., Günzburg, W. H., & Hohenadl, C. (2007): Bacteriophage-encoded toxins: the lambda-holin protein causes caspase-independent non-apoptotic cell death of eukaryotic cells. Cellular microbiology, 9(7): 1753–1765.
Doi: https://doi.org/10.1111/j.1462-5822.2007.00911.xIro, M., Klein, R., Gálos, B., Baranyi, U., Rössler, N., & Witte, A. (2007): The lysogenic region of virus phiCh1: identification of a repressor-operator system and determination of its activity in halophilic Archaea. xtremophiles : life under extreme conditions, 11(2): 383–396.
Doi: https://doi.org/10.1007/s00792-006-0040-3Klein, R., Ruttkowski, B., Knapp, E., Salmons, B., Günzburg, W. H., & Hohenadl, C. (2006): WPRE-mediated enhancement of gene expression is promoter and cell line specific. Gene, 372: 153–161.
Doi: https://doi.org/10.1016/j.gene.2005.12.018Hand, N. J., Klein, R., Laskewitz, A., & Pohlschröder, M. (2006): Archaeal and bacterial SecD and SecF homologs exhibit striking structural and functional conservation. Journal of bacteriology,, 188(4): 1251–1259.
Doi: https://doi.org/10.1128/JB.188.4.1251-1259.2006Agu, C. A., Klein, R., Schwab, S., König-Schuster, M., Kodajova, P., Ausserlechner, M., Binishofer, B., Bläsi, U., Salmons, B., Günzburg, W. H., & Hohenadl, C. (2006): The cytotoxic activity of the bacteriophage lambda-holin protein reduces tumour growth rates in mammary cancer cell xenograft models. The journal of gene medicine, 8(2): 229–241.
Doi: https://doi.org/10.1002/jgm.833Mangold, M., Siller, M., Roppenser, B., Vlaminckx, B. J., Penfound, T. A., Klein, R., Novak, R., Novick, R. P., & Charpentier, E. (2004): Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Molecular microbiology, 53(5): 1515–1527.
Doi: https://doi.org/10.1111/j.1365-2958.2004.04222.xRössler, N., Klein, R., Scholz, H., & Witte, A. (2004): Inversion within the genome of the haloalkaliphilic virus phiCh1 results in differential expression of structural proteins. Molecular microbiology, 52(2): 413–426.
Doi: https://doi.org/10.1111/j.1365-2958.2003.03983.xKlein, R., Baranyi, U., Rössler, N., Greineder, B., Scholz, H., & Witte, A. (2002): Natrialba magadii virus fCh: First complete nucleotide sequence and functional organization of a virus infecting an extreme haloalkaliphilic archaeon. Molecular microbiology, 45(3): 851–863.
Doi: https://doi.org/10.1046/j.1365-2958.2002.03064.xKlein, R., Greineder, B., Baranyi, U., & Witte, A. (2000): The structural protein E of the archaeal virus phiCh1: evidence for processing in Natrialba magadii during virus maturation. Virology, 276(2): 376–387.
Doi: https://doi.org/10.1006/viro.2000.0565Baranyi, U., Klein, R., Lubitz, W., Krüger, D. H., & Witte, A. (2000): The archaeal halophilic virus-encoded Dam-like methyltransferase M. phiCh1-I methylates adenine residues and complements dam mutants in the low salt environment of Escherichia coli. Molecular microbiology, 35(5): 1168–1179.
Doi: https://doi.org/10.1046/j.1365-2958.2000.01786.xKatinger, A., Lubitz, W., Szostak, M. P., Stadler, M., Klein, R., Indra, A., Huter, V., & Hensel, A. (1999): Pigs aerogenously immunized with genetically inactivated (ghosts) or irradiated Actinobacillus pleuropneumoniae are protected against a homologous aerosol challenge despite differing in pulmonary cellular and antibody responses. Journal of biotechnology, 73(2-3): 251–260.
Doi: https://doi.org/10.1016/s0168-1656(99)00143-1Witte, A., Baranyi, U., Klein, R., Sulzner, M., Luo, C., Wanner, G., Krüger, D. H., & Lubitz, W. (1997): Characterization of Natronobacterium magadii phage phi Ch1, a unique archaeal phage containing DNA and RNA. Molecular microbiology, 23(3): 603–616.
Doi: https://doi.org/10.1046/j.1365-2958.1997.d01-1879.xSzostak, M. P., Hensel, A., Eko, F. O., Klein, R., Auer, T., Mader, H., Haslberger, A., Bunka, S., Wanner, G., & Lubitz, W. (1996): Bacterial ghosts: non-living candidate vaccines. Journal of biotechnology, 44(1-3): 161–170.
Doi: https://doi.org/10.1016/0168-1656(95)00123-9
Prof.(FH) Priv.Doz. Dr. Reinhard KleinFachhochschulprofessor Institut BiotechnologieProf.(FH) Mag. Dana Mezricky
Fachhochschulprofessorin Institut Biotechnologie
Institut Biotechnologie
- GMP/GLP
- Molekulare Biologie
- Proteinchemie / Immunologie / Biochemische Alalysemethoden
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
-
EvoFerm
Department of Science & Technology
-
Spike-Fermentation
Department of Science & Technology
-
Theraferm
Department of Science & Technology
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Department of Science & Technology
-
Extremophiles
Department of Science & Technology
-
Co-Kultivierung von Mikroorganismen
Department of Science & Technology
Nahlik,V., Cizkova,M., Singh,A., Mezricky,D., Rucki,M., Andresen,E., Vitova,M. (2022): Growth of the Red Alga Galdieria suphuraria in Re Mud-Containing Medium and Accumulation of Rare Earth Elements. Springer Nature: Waste and Biomass Valorization , 13(12, Dezember 2022): -.
Doi: https://doi.org/10.1007/s12649-022-02021-3Náhlík, V., Zachleder, V., Čížková, M., Bišová, K., Singh, A., Mezricky, D., Řezanka, T., Vítová, M. (2021): Growth under Different Trophic Regimes and Synchronization of the Red Microalga Galdieria sulphuraria. Biomolecules, 11(7)(939).
Čížková, M., Mezricky, P., Mezricky, D., Rucki, M., Zachleder, V., Vítová, M. (2020): Bioaccumulation of Rare Earth Elements from Waste Luminophores in the Red Algae, Galdieria phlegrea. Waste Biomass Valor.
Doi: https://doi.org/10.1007/s12649-020-01182-3Rezanka, T., Rezanka, M., Mezricky, D., Vítova, M. (2020): Lipidomic analysis of diatoms cultivated with silica nanoparticles. Phytochemistry, 177: 112452.
Doi: https://doi.org/10.1016/j.phytochem.2020.112452Čížková, M., Mezricky, D., Rucki, M., Tóth, T. M., Náhlík, V., Lanta, V., Bišová, K., Zachleder, V., & Vítová, M. (2019): Bio-mining of Lanthanides from Red Mud by Green Microalgae. Molecules , 24(7): 1356.
Doi: https://doi.org/10.3390/molecules24071356Řezanka, T., Kaineder, K., Mezricky, D., Řezanka, M., Bišová, K., Zachleder, V., & Vítová, M. (2016): The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda. Photosynthesis Research, 130(1-3): 335-346.
Doi: https://doi.org/10.1007/s11120-016-0263-9
Prof.(FH) Mag. Dana MezrickyFachhochschulprofessorin Institut BiotechnologieDipl.Biol. Maren Pflüger, PhD
Scientist Institut Biotechnologie
Institut Biotechnologie
- Entzündung
- Zytotoxizität
- Wundheilung
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
-
Extremophiles
Department of Science & Technology
-
Etablierung innovativer humaner Tumor-Mimetika für das Screening von bioaktiven Wirkstoffen
Department of Science & Technology
-
Biopharm - Isolation bioaktiver Stoffe aus Cyanobakterien
Department of Science & Technology
-
Zellbasierte Testsysteme für bioaktive Substanzen
Department of Science & Technology
Hundsberger, H., Koppensteiner, A., Hofmann, E., Ripper, D., Pflüger, M., Stadlmann, V., Klein, C. T., Kreiseder, B., Katzlinger, M., Eger, A., Forster, F., Missbichler, A., & Wiesner, C. (2017): A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells. SLAS discovery : advancing life sciences R & D, 22(8): 1035–1043.
Doi: https://doi.org/10.1177/2472555217697435Al-Harthy, T., Zoghaib, W. M., Pflüger, M., Schöpel, M., Önder, K., Reitsammer, M., Hundsberger, H., Stoll, R., & Abdel-Jalil, R. (2016): Design, Synthesis, and Cytotoxicity of 5-Fluoro-2-methyl-6-(4-aryl-piperazin-1-yl) Benzoxazoles. Molecules, 21(10): 1290.
Doi: https://doi.org/10.3390/molecules21101290Al-Harthy, T., Abdel-Jalil, R., Zoghaib, W., Pflüger, M., Hofmann, E., & Hundsberger, H. (2016): Design and synthesis of benzothiazole schiff bases of potential antitumor activity. Heterocycles, 92(7): 1282-1292.
Doi: https://doi.org/10.3987/COM-16-13471Kapuścik, A., Hrouzek, P., Kuzma, M., Bártová, S., Novák, P., Jokela, J., Pflüger, M., Eger, A., Hundsberger, H., Kopecký, J. (2013): Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent. Chembiochem : a European journal of chemical biology, 14(17): 2329-2337.
Doi: https://doi.org/10.1002/cbic.201300246Kreiseder, B., Orel, L., Bujnow, C., Buschek, S., Pflueger, M., Schuett, W., Hundsberger, H., de Martin, R., Wiesner, C. (2013): α‐Catulin downregulates E‐cadherin and promotes melanoma progression and invasion. International journal of cancer, 132(3): 521-530.
Doi: https://doi.org/10.1002/ijc.27698Pflüger, M., Kapuscik, A., Lucas, R., Koppensteiner, A., Katzlinger, M., Jokela, J., Eger, A., Jacobi, N., Wiesner, C., Hofmann, E., Onder, K., Kopecky, J., Schütt, W., Hundsberger, H. (2013): A combined impedance and AlphaLISA-based approach to identify anti-inflammatory and barrier-protective compounds in human endothelium. Journal of biomolecular screening, 18(1): 67-74.
Doi: https://doi.org/10.1177/1087057112458316Khare, V., Lyakhovich, A., Dammann, K., Lang, M., Borgmann, M., Tichy, B., Pospisilova, S., Luciani, G., Campregher, C., Evstatiev, R., Pflueger, M., Hundsberger, H., & Gasche, C. (2013): Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1. Biochemical Pharmacology, 85(2): 234-244.
Doi: https://doi.org/10.1016/j.bcp.2012.10.026Amatschek, S., Lucas, R., Eger, A., Pflueger, M., Hundsberger, H., Knoll, C., Grosse-Kracht, S., Schuett, W., Koszik, F., Maurer, D., Wiesner, C. (2011): CXCL9 induces chemotaxis, chemorepulsion and endothelial barrier disruption through CXCR3-mediated activation of melanoma cells. British journal of cancer, 104(3): 469-479.
Doi: https://doi.org/10.1038/sj.bjc.6606056Hundsberger, H., Verin, A., Wiesner, C., Pflüger, M., Dulebo, A., Schütt, W., Lasters, I., Männel, D., Wendel, A., Lucas, R. (2008): TNF: a moonlighting protein at the interface between cancer and infection. Frontiers in Bioscience, 13: 5374-86.
Doi: https://doi.org/10.2741/3087Hundsberger, H., Verin, A., Wiesner, C., Pflüger, M., Dulebo, A., Schütt, W., Lasters, I., Männel, D. N., Wendel, A., & Lucas, R. (2008): TNF: a moonlighting protein at the interface between cancer and infection. Frontiers in bioscience : a journal and virtual library, 13: 5374–5386.
Doi: https://doi.org/10.2741/3087Wiesner, C., Pflueger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schuett, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene interdisziplinar, 3(1).
Wiesner, C., Pflüger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schütt, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene Interdisziplinär, 3(1): Doc05.
Wiesner, C., Lucas, R., Pflueger, M., Kleber, C., Kopecky, J., Stys, D., Entler, B., Hundsberger, H., Atzler, J., Hrouzek, P., Lukesova, A., Schuett, W., (2007): Endothelial Cell-Based Methods for the Detection of Cyanobacterial Anti- Inflammatory and Wound-Healing Promoting Metabolites. Drug Metabolism Letters, 1(4): 254-260.
Doi: https://doi.org/10.2174/187231207783221385Lucas, R., Hundsberger, H., Pflueger, M., Fischer, B., Morel, D., Braun, C., Wendel, A., Chakraborty, T., Schuett, W., Wiesner, C., Hamacher, J. (2007): The Tumor Necrosis Factor-Derived TIP Peptide: A Potential Anti-Edema Drug. Letters in Drug Design & Discovery, 4(5): 336-340.
Doi: https://doi.org/10.2174%2F157018007780867816
Dipl.Biol. Maren Pflüger, PhDScientist Institut BiotechnologieWadih Rassy, MSc
Scientist Institut Biotechnologie
Institut Biotechnologie
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
-
EvoFerm
Department of Science & Technology
-
Theraferm
Department of Science & Technology
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Department of Science & Technology
-
Synthese und industrielle Verwendung von Hydroxytyrosol
Department of Science & Technology
Rassy, W., Ripper, D., Pomare, E., Winkler, S., Koppensteiner, A., Spadiut O.,Schild, D. (2023): Incorporation of ionic rare earth elements as a form of microbial environmental remediation. Frontiers in Environmental Science, 11(Section Toxicology, Pollution and the Environment).
Doi: https://doi.org/10.3389/fenvs.2023.1112612
Wadih Rassy, MScScientist Institut BiotechnologieDI(FH) Thomas Rieß
Scientific Project Staff Institut Biotechnologie
Institut Biotechnologie
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
-
EvoFerm
Department of Science & Technology
DI(FH) Thomas RießScientific Project Staff Institut BiotechnologieProf.(FH) DI Dominik Schild
Fachhochschulprofessor Institut Biotechnologie
Institut Biotechnologie
- Fermentationsentwicklung
- Biochemische Verfahrenstechnik
- Prozessingenieur
- Applied ChemistryBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
-
EvoFerm
Projektleitung, Department of Science & Technology
-
Spike-Fermentation
Projektleitung, Department of Science & Technology
-
Anwendung von Hydroxytyrosol zur Stabilisierung
Department of Science & Technology
-
Theraferm
Projektleitung, Department of Science & Technology
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Projektleitung, Department of Science & Technology
-
Synthese und industrielle Verwendung von Hydroxytyrosol
Projektleitung, Department of Science & Technology
-
Extremophiles
Department of Science & Technology
-
Co-Kultivierung von Mikroorganismen
Projektleitung, Department of Science & Technology
-
Zellbasierte Testsysteme für bioaktive Substanzen
Department of Science & Technology
Rassy, W., Ripper, D., Pomare, E., Winkler, S., Koppensteiner, A., Spadiut O.,Schild, D. (2023): Incorporation of ionic rare earth elements as a form of microbial environmental remediation. Frontiers in Environmental Science, 11(Section Toxicology, Pollution and the Environment).
Doi: https://doi.org/10.3389/fenvs.2023.1112612Hundsberger, H., Stierschneider, A., Sarne, V., Ripper, D., Schimon, J., Weitzenböck, H. P., Schild, D., Jacobi, N., Eger, A., Atzler, J., Klein, C. T., & Wiesner, C. (2021): Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Molecules (Basel, Switzerland), 26(3): 717.
Doi: https://doi.org/10.3390/molecules26030717Amer, H., Mimini, V., Schild, D., Rinner, U., Bacher, H., Potthast, A., Rosenau, T. (2019): Gram-scale economical synthesis of trans-coniferyl alcohol and its corresponding thiol. Holzforschung, 74(2): 197-202.
Doi: https://doi.org/10.1515/hf-2018-0297
Prof.(FH) DI Dominik SchildFachhochschulprofessor Institut BiotechnologieHon.-Prof.(FH) DI (FH) Rita Seeböck, PhD
Scientific Project Staff Institut Biotechnologie
Institut Biotechnologie
- Molekularpathologie
- Molekularbiologie
- Diagnostik
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
-
Testung von rekombinanten polyklonalen Antikörperfragmenten gegen Gluten-Peptide
Department of Science & Technology
-
DNA Methylierung im Lungenkrebs und ihre geschlechtsspezifische
Auswirkung auf die Effizienz epigenetischer Therapien
Projektleitung, Department of Science & Technology
Seeboeck, R., Sarne, V., & Haybaeck, J. (2019): Current Coverage of the mTOR Pathway by Next-Generation Sequencing Oncology Panels. International journal of molecular sciences, 20(3): 690.
Doi: https://doi.org/10.3390/ijms20030690Sarne, V., Braunmueller, S., Rakob, L., Seeboeck, R. (2019): The Relevance of Gender in Tumor-Influencing Epigenetic Traits. Epigenomes 2019, 3(1), 6.
Jacobi, N., Seeboeck, R., Hofmann, E., Schweiger, H., Smolinska, V., Mohr, T., Boyer, A., Sommergruber, W., Lechner, P., Pichler-Huebschmann, C., Önder, K., Hundsberger, H., Wiesner, C., & Eger, A. (2017): Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget, 8(64): 107423–107440.
Doi: https://doi.org/10.18632/oncotarget.22475Rita Seeböck and Johannes Haybaeck (2017): Molecular Carcinogenesis of Urinary Bladder Cancer. In Mechanisms of Molecular Carcinogenesis Volume 2 (p.191-206). Cham, Switzerland: Springer.
Jacobi, N., Smolinska, V., Seeboeck, R., Stierschneider, A., Klein, C., Hofmann, E., Wiesner, C., Mohr, T., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2017): 3D Anti-Cancer drug discovery models: A promising approach for precision medicine. In IMC Fachhochschule Krems GmbH (Hrsg.), Online-Tagungsband FHK Forschungsforum 2017. Krems: FFH.
Jacobi, N., Seeboeck, R., Hofmann, E., & Eger, A. (2017): ErbB Family Signalling: A Paradigm for Oncogene Addiction and Personalized Oncology. Cancers, 9(4): 33.
Doi: https://doi.org/10.3390/cancers9040033Hofmann, E., Seeboeck, R., Jacobi, N., Obrist, P., Huter, S., Klein, C., Oender, K., Wiesner, C., Hundsberger, H., & Eger, A. (2016): The combinatorial approach of laser-captured microdissection and reverse transcription quantitative polymerase chain reaction accurately determines HER2 status in breast cancer. Biomarker research, 7(4): 8.
Doi: https://doi.org/10.1186/s40364-016-0062-7Zopf A, Raim R, Danzer M, Niklas N, Spilka R, Pröll J, Gabriel C, Nechansky A, Roucka M. (2015): Introduction of the hybcell-based compact sequencing technology and comparison to state-of-the-art methodologies for KRAS mutation detection. Biotechniques 58(3):126-34.
Spilka, R., Ernst, C., Bergler, H., Rainer, J., Flechsig, S., Vogetseder, A., Lederer, E., Benesch, M., Brunner, A., Geley, S., Eger, A., Bachmann, F., Doppler, W., Obrist, P., & Haybaeck, J. (2014): eIF3a is over-expressed in urinary bladder cancer and influences its phenotype independent of translation initiation. Cellular oncology (Dordrecht), 37(4): 253–267.
Doi: https://doi.org/10.1007/s13402-014-0181-9Tymoszuk P, Charoentong P, Hackl H, Spilka R, Müller-Holzner E, Trajanoski Z, Obrist P, Revillion F, Peyrat JP, Fiegl H, Doppler W (2014): High STAT1 mRNA levels but not its tyrosine phosphorylation are associated with macrophage infiltration and bad prognosis in breast cancer. BMC Cancer.
Spilka R, Ernst C, Mehta AK, Haybaeck J (2013): Eukaryotic translation initiation factors in cancer development and progression. REVIEW. Cancer Lett 340(1):9-21.
Pilat U, Dechat T, Bertrand AT, Woisetschläger N, Gotic I, Spilka R, Biadasiewicz K, Bonne G, Foisner R (2013): The muscle dystrophy-causing ΔK32 lamin A/C mutant does not impair the functions of the nucleoplasmic lamin-A/C-LAP2α complex in mice. J Cell Sci. 126(Pt 8):1753-62.
Seeböck R, Laimer K, Bachmann F, Spizzo G, Vogetseder A, Wieser M, Müller H, Haybaeck J, Obrist P (2012): Overexpression of eIF3a in Squamous Cell Carcinoma of the Oral Cavity and Its Putative Relation to Chemotherapy Response. J Oncol. 2012:901956.
Haybaeck J, O'Connor T, Seeböck R, Spizzo G, Ensinger Ch, Mikuz G, Brunhuber T, Vogetseder A, Theurl I, Salvenmoser W, Draxl H, Bänziger R, Bachmann F, Schäfer G, Burger M, Obrist P (2010): Overexpression of p150, a part of the large subunit of the eukaryotic translation initiation factor 3, in colon cancer. Anticancer Res. 30(4):1047-55..
Gotic I, Schmidt WM, Biadasiewicz K, Leschnik M, Spilka R, Braun J, Stewart CL, Foisner R (2010): Loss of LAP2 alpha delays satellite cell differentiation and affects postnatal fiber-type determination. Stem Cells 28(3):480-8.
Hon.-Prof.(FH) DI (FH) Rita Seeböck, PhDScientific Project Staff Institut BiotechnologieProf.(FH) Mag. Dr. Christoph Wiesner
Fachhochschulprofessor Institut Biotechnologie
Institut Biotechnologie
- Zell- und Molekularbiologie
- Wirkstoff Screening
- Projekt management
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
-
Optogenetische Stammzellen in heterotypische Tumorsphäroiden
Projektleitung, Department of Science & Technology
-
EvoFerm
Department of Science & Technology
-
Spike-Fermentation
Department of Science & Technology
-
Entwicklung einer optogenetisch kontrollierbaren MSC-Zelllinie für die präzise Regulation immunmodulatorischer Faktoren
Projektleitung, Department of Science & Technology
-
Biomarker-basierte therapeutische Prävention von Knochenmetastasen beim Mammakarzinom: die phathophysiologische Rolle der endostalen Nische
Projektleitung, Department of Science & Technology
-
Entwicklung leistungsfähiger Diagnostikverfahren und neuer Therapieansätze in Inflammation und Sepsis
Projektleitung, Department of Science & Technology
-
Theraferm
Department of Science & Technology
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Department of Science & Technology
-
Optogenetische Krebsmodelle
Department of Science & Technology
-
Testung von rekombinanten polyklonalen Antikörperfragmenten gegen Gluten-Peptide
Department of Science & Technology
-
Zellbasierte Testsysteme für bioaktive Substanzen
Department of Science & Technology
Stierschneider, A., Wiesner, C. (2024): Shedding light on the molecular and regulatory mechanisms of TLR4 signaling in endothelial cells under physiological and inflamed conditions. Frontiers in Immunology, 14(1264889): 1-15.
Doi: https://doi.org/10.3389/fimmu.2023.1264889Colleselli, K., Stierschneider, A., Wiesner, C. (2023): An Update on Toll-like Receptor 2, Its Function and Dimerization in Pro- and Anti-Inflammatory Processes. International Journal of Molecular Sciences.
Doi: https://doi.org/10.3390/ijms241512464Colleselli, K., Ebeyer-Masotta, M., Neuditschko, B., Stierschneider, A., Pollhammer, C., Potocnjak, M., Hundsberger, H., Herzog, F., Wiesner, C. (2023): Beyond Pattern Recognition: TLR2 Promotes Chemotaxis, Cell Adhesion, and Migration in THP-1 Cells. Cells, 12(10): 1425.
Doi: https://doi.org/10.3390/cells12101425Stierschneider, A., Neuditschko, B., Colleselli, K., Hundsberger, H., Herzog, F., & Wiesner, C. (2023): Comparative and Temporal Characterization of LPS and Blue-Light-Induced TLR4 Signal Transduction and Gene Expression in Optogenetically Manipulated Endothelial Cells. Cells, 12(697).
Doi: https://doi.org/10.3390/cells12050697Weitzenböck, HP., Gschwendtner, A., Wiesner, C., Depke, M., Schmidt, F., Trautinger, F., Hengstschläger, M., Hundsberger, H., Mikula, M. (2022): Proteome analysis of NRF2 inhibition in melanoma reveals CD44 up-regulation and increased apoptosis resistance upon vemurafenib treatment. Cancer Medicine, 11(4): 956-967.
Doi: https://doi.org/10.1002/cam4.4506Stierschneider, A., Grünstäudl, P., Colleselli, K., Atzler, J., Klein, C., Hundsberger, H., Wiesner, C. (2021): Light-Inducible Spatio-Temporal Control of TLR4 and NF-κB-Gluc Reporter in Human Pancreatic Cell Line. International Journal of Molecular Sciences, 22(17): 9232.
Doi: https://doi.org/10.3390/ijms22179232Pretsch, A., Nagl, M., Wiesner, C., Hollaus, R., Genov, M. (2021): Polyguanidine polymers and methods of use thereof (US11013760B2). United States Patent Office.
Hundsberger, H., Stierschneider, A., Sarne, V., Ripper, D., Schimon, J., Weitzenböck, H. P., Schild, D., Jacobi, N., Eger, A., Atzler, J., Klein, C. T., & Wiesner, C. (2021): Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Molecules (Basel, Switzerland), 26(3): 717.
Doi: https://doi.org/10.3390/molecules26030717Sarne, V., Huter, S., Braunmueller, S., Rakob, L., Jacobi, N., Kitzwögerer, M., Wiesner, C., Obrist, P., & Seeboeck, R. (2020): Promoter Methylation of Selected Genes in Non-Small-Cell Lung Cancer Patients and Cell Lines. International journal of molecular sciences, 21(13): 4595.
Doi: https://doi.org/10.3390/ijms21134595Pretsch, A., Nagl, M., Wiesner, C., Hollaus, R., Genov, M. (2019): Method for producing polyguanidines (US10335431B2). United States Patent Office.
Jacobi, N., Seeboeck, R., Hofmann, E., Schweiger, H., Smolinska, V., Mohr, T., Boyer, A., Sommergruber, W., Lechner, P., Pichler-Huebschmann, C., Önder, K., Hundsberger, H., Wiesner, C., & Eger, A. (2017): Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget, 8(64): 107423–107440.
Doi: https://doi.org/10.18632/oncotarget.22475Jacobi, N., Smolinska, V., Seeboeck, R., Stierschneider, A., Klein, C., Hofmann, E., Wiesner, C., Mohr, T., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2017): 3D Anti-Cancer drug discovery models: A promising approach for precision medicine. In IMC Fachhochschule Krems GmbH (Hrsg.), Online-Tagungsband FHK Forschungsforum 2017. Krems: FFH.
Hundsberger, H., Koppensteiner, A., Hofmann, E., Ripper, D., Pflüger, M., Stadlmann, V., Klein, C. T., Kreiseder, B., Katzlinger, M., Eger, A., Forster, F., Missbichler, A., & Wiesner, C. (2017): A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells. SLAS discovery : advancing life sciences R & D, 22(8): 1035–1043.
Doi: https://doi.org/10.1177/2472555217697435Pretsch, A., Nagl, M., Wiesner, C., Burgmann, H. (2017): Bioactive polymers (US9567294B2). United States Patent Office.
Genov, M., Kreiseder, B., Nagl, M., Wiesner, C. et al. (2016): Tetrahydroanthraquinone Derivative (±)-4-Deoxyaustrocortilutein Induces Cell Cycle Arrest and Apoptosis in Melanoma Cells via Upregulation of p21 and p53 and Downregulation of NF-kappaB. Journal of Cancer, 7(5): 555.
Doi: https://doi:10.7150/jca.13614Preisitsch, M., Niedermeyer, T., Heiden, SE., Neidhardt, I., Kumpfmueller, J., Wurster, M., Harmrolfs, K., Wiesner, C., Enke, H., Mueller, R., Mundt, S. (2016): Cylindrofridins A–C, Linear Cylindrocyclophane-Related Alkylresorcinols from the Cyanobacterium Cylindrospermum stagnale. Journal of natural products, 79(1): 106-115.
Doi: https://doi.org/10.1021/acs.jnatprod.5b00768Preisitsch, M., Heiden, SE., Beerbaum, M., Niedermeyer, T., Schneefeld, M., Herrmann, J., Kumpfmueller, J., Thuermer, A., Neidhardt, I., Wiesner, C., Daniel, R., Mueller, R., Bange, FC., Schmieder, P., Schweder, T., Mundt, S. (2016): Effects of halide ions on the carbamidocyclophane biosynthesis in Nostoc sp. CAVN2. Marine drugs, 14(1): 21.
Doi: https://doi.org/10.3390/md14010021Preisitsch, M., Harmrolfs, K., Pham, HT., Heidern, SE., Fuessl, A., Wiesner, C., Pretsch, A., Switecka-Hagenbruch, M., Niedermeyer, TH., Mueller, R., Mundt, S. (2015): Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. The Journal of antibiotics, 68(9): 600-600.
Doi: https://doi.org/10.1038/ja.2015.79Kreiseder, B., Holper-Schichl, Y. M., Muellauer, B., Jacobi, N., Pretsch, A., Schmid, J. A., de Martin, R., Hundsberger, H., Eger, A., & Wiesner, C. (2015): Alpha-catulin contributes to drug-resistance of melanoma by activating NF-κB and AP-1. PloS one, 10(3): e0119402.
Doi: https://doi.org/10.1371/journal.pone.0119402Preisitsch, M., Harmrolfs, K., Pham, H., Heiden, SE., Fuessel, A., Wiesner, C., Pretsch, A., et al. (2015): Anti-MRSA-acting carbamidocyclophanes H–L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. The Journal of antibiotics, 68(3): 165-177.
Doi: https://doi.org/10.1038/ja.2014.118Pretsch, A., Nagl, M., Schwendinger, K., Kreiseder, B., Wiederstein, M., Pretsch, D., Genov, M., Hollaus, R., Zinssmeister, D., Debbab, A., Hundsberger, H., Eger, A., Proksch, P., & Wiesner, C. (2014): Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PloS one, 9(6): e97929.
Doi: https://doi.org/10.1371/journal.pone.0097929Kreiseder, B., Orel, L., Bujnow, C., Buschek, S., Pflueger, M., Schuett, W., Hundsberger, H., de Martin, R., Wiesner, C. (2013): α‐Catulin downregulates E‐cadherin and promotes melanoma progression and invasion. International journal of cancer, 132(3): 521-530.
Doi: https://doi.org/10.1002/ijc.27698Pflüger, M., Kapuscik, A., Lucas, R., Koppensteiner, A., Katzlinger, M., Jokela, J., Eger, A., Jacobi, N., Wiesner, C., Hofmann, E., Onder, K., Kopecky, J., Schütt, W., Hundsberger, H. (2013): A combined impedance and AlphaLISA-based approach to identify anti-inflammatory and barrier-protective compounds in human endothelium. Journal of biomolecular screening, 18(1): 67-74.
Doi: https://doi.org/10.1177/1087057112458316Amatschek, S., Lucas, R., Eger, A., Pflueger, M., Hundsberger, H., Knoll, C., Grosse-Kracht, S., Schuett, W., Koszik, F., Maurer, D., Wiesner, C. (2011): CXCL9 induces chemotaxis, chemorepulsion and endothelial barrier disruption through CXCR3-mediated activation of melanoma cells. British journal of cancer, 104(3): 469-479.
Doi: https://doi.org/10.1038/sj.bjc.6606056Hundsberger, H., Verin, A., Wiesner, C., Pflüger, M., Dulebo, A., Schütt, W., Lasters, I., Männel, D., Wendel, A., Lucas, R. (2008): TNF: a moonlighting protein at the interface between cancer and infection. Frontiers in Bioscience, 13: 5374-86.
Doi: https://doi.org/10.2741/3087Hundsberger, H., Verin, A., Wiesner, C., Pflüger, M., Dulebo, A., Schütt, W., Lasters, I., Männel, D. N., Wendel, A., & Lucas, R. (2008): TNF: a moonlighting protein at the interface between cancer and infection. Frontiers in bioscience : a journal and virtual library, 13: 5374–5386.
Doi: https://doi.org/10.2741/3087Wiesner, C., Pflueger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schuett, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene interdisziplinar, 3(1).
Wiesner, C., Pflüger, M., Kopecky, J., Stys, D., Entler, B., Lucas, R., Hundsberger, H., Schütt, W. (2008): Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene Interdisziplinär, 3(1): Doc05.
Wiesner, C., Winsauer, G., Resch, U. et al. (2008): α-Catulin, a Rho signalling component, can regulate NF-κB through binding to IKK-β, and confers resistance to apoptosis. Oncogene , 27: 2159–2169.
Doi: https://doi.org/10.1038/sj.onc.1210863Wiesner, C., Lucas, R., Pflueger, M., Kleber, C., Kopecky, J., Stys, D., Entler, B., Hundsberger, H., Atzler, J., Hrouzek, P., Lukesova, A., Schuett, W., (2007): Endothelial Cell-Based Methods for the Detection of Cyanobacterial Anti- Inflammatory and Wound-Healing Promoting Metabolites. Drug Metabolism Letters, 1(4): 254-260.
Doi: https://doi.org/10.2174/187231207783221385Winter, D., Moser, J., Kriehuber, E., Wiesner, C., Knobler, R., Trautinger, F., Bombosi, P., Stingl, G., Petzelbauer, P., Rot, A., & Maurer, D. (2007): Down-modulation of CXCR3 surface expression and function in CD8+ T cells from cutaneous T cell lymphoma patients. Journal of immunology, 179(6): 4272-4282.
Doi: https://doi.org/10.4049/jimmunol.179.6.4272Lucas, R., Hundsberger, H., Pflueger, M., Fischer, B., Morel, D., Braun, C., Wendel, A., Chakraborty, T., Schuett, W., Wiesner, C., Hamacher, J. (2007): The Tumor Necrosis Factor-Derived TIP Peptide: A Potential Anti-Edema Drug. Letters in Drug Design & Discovery, 4(5): 336-340.
Doi: https://doi.org/10.2174%2F157018007780867816Hofer-Warbinek, R., Schmid, J.A., Mayer, H., Winsauer, G., Orel, L., Mueller, B., Wiesner, C., Binder, B.R., de Martin, R. (2004): A highly conserved proapoptotic gene, IKIP, located next to the APAF1 gene locus, is regulated by p53. Cell Death & Differentiation, 11(12): 1317 - 1325.
Doi: https://doi.org/10.1038%2Fsj.cdd.4401502Wiesner, C., Hoeth, M., De Martin, R. (2003): Functional screening for transcription factors (US20030059858A1). United States Patent Office.
Wiesner, C., Hoeth, M., Binder, B.R., de Martin, R. (2002): A functional screening assay for the isolation of transcription factors. Nucleic Acids Research, 30(16): e80.
Doi: https://doi.org/10.1093/nar/gnf079
Prof.(FH) Mag. Dr. Christoph WiesnerFachhochschulprofessor Institut BiotechnologieDipl.-Ing. Dr. techn. Sarita Paudel
Senior Lecturer Institut Digitalisierung und Informatik
Institut Digitalisierung und Informatik
- InformaticsBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
- Tourism and Leisure ManagementBachelor of Arts in Business / Vollzeit
- Business AdministrationBachelor of Arts in Business / Vollzeit
- Tourism and Leisure Management in BakuVollzeit
- Tourism and Leisure Management in TashkentBachelor of Arts in Business / Vollzeit
- International Business Management in TashkentBachelor of Arts in Business / Vollzeit
Ruiz-Torrubiano, R., Dhungana, D., Kormann-Hainzl, G., Paudel, S. (2023): SSDL: A Domain-Specific Modeling Language for Smart City Services. In Meierhofer, J., West, S., Buecheler, T. (Hrsg.), Smart Services Summit. SMSESU 2022. Progress in IS (113-121). Zürich, Switzerland: Springer, Cham.
Doi: https://doi.org/10.1007/978-3-031-36698-7_12Paudel, S., Smith, P., Zseby, T. (2018): Stealthy Attacks on Smart Grid PMU State Estimation. Proceedings of the 13th International conference on Availability, Reliability and Security (ARES 2018), Article 16: 1-10.
Doi: https://doi.org/10.1145/3230833.3230868Paudel, S., Smith, P., Zseby, T. (2017): Attack Models for Advanced Persistent Threats in Smart Grid Wide Area Monitoring. Proceedings of the 2nd Workshop on Cyber-Physical Security and Resilience in Smart Grids (CPSR-SG'17): 61-66.
Doi: https://doi.org/10.1145/3055386.3055390Paudel, S., Smith, P., Zseby, T. (2017): Data Attacks in Wide Area Monitoring System. Proceedings of the Symposium on Innovative Smart Grid Cybersecurity Solutions.
Paudel, S., Smith, P., Zseby, T. (2016): Data integrity attacks in smart grid wide area monitoring. Proceedings of the 4th International Symposium for ICS & SCADA Cyber Security Research 2016 (ICS-CSR '16).
Doi: https://doi.org/10.14236/ewic/ICS2016.9Paudel, S., Tauber, M., Wagner, C., Hudic, A., Ng, W. (2014): Categorization of Standards, Guidelines and Tools for Secure System Design for Critical Infrastructure IT in the Cloud. 2014 IEEE 6th International Conference on Cloud Computing Technology and Science, Singapore: 956-963.
Florian, M., Paudel, S., Tauber, M. (2013): Trustworthy evidence gathering mechanism for multilayer cloud compliance. 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013).
Doi: https://doi.org/10.1109/ICITST.2013.6750257Paudel, S., Tauber, M., Brandic, I. (2013): Security standards taxonomy for Cloud applications in Critical Infrastructure IT. 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013).
Doi: https://doi.org/10.1109/ICITST.2013.6750282
Dipl.-Ing. Dr. techn. Sarita PaudelSenior Lecturer Institut Digitalisierung und InformatikMag. Dr. Peter Allacher
Operative Leitung / Institute Krems Bioanalytics
Institute Krems Bioanalytics
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
Schweiger, H., Rejtö, J., Hofbauer, C.J., Berg, V., Allacher, P., Zwiauer, K., Feistritzer, C., Schuster, G., Ay, C., Reipert, B.M., Pabinger, I. (2022): Nonneutralizing FVIII-specific antibody signatures in patients with hemophilia A and in healthy donors. Blood Advances, 6(3): 946-958.
Doi: https://doi.org/10.1182/bloodadvances.2021005745Lubich, C., Allacher, P., de la Rosa, M., Bauer, A., Prenninger, T., Horling, F. M., Siekmann, J., Oldenburg, J., Scheiflinger, F., & Reipert, B. M. (2016): The Mystery of Antibodies Against Polyethylene Glycol (PEG) - What do we Know?. Pharmaceutical research, 33(9): 2239-49.
Doi: https://doi.org/10.1007/s11095-016-1961-xJaki, T., Allacher, P., & Horling, F. (2016): A false sense of security? Can tiered approach be trusted to accurately classify immunogenicity samples?. Journal of pharmaceutical and biomedical analysis, 128: 166-73.
Doi: https://doi.org/10.1016/j.jpba.2016.05.031Hofbauer, C.J., Whelan,S.F.J., Hirschler, M., Allacher, P., Horling, F.M., Lawo, J.-P., Oldenburg, J., Tiede, A., Male, C., Windyga, J., Greinacher, A., Knöbl, P.N., Schrenk, G., Koehn, J., Scheiflinger, F., Reipert, B.M. (2015): Affinity of FVIII-specific antibodies reveals major differences between neutralizing and nonneutralizing antibodies in humans. Blood, 125(7): 1180-1188.
Doi: https://doi.org/10.1182/blood-2014-09-598268Jaki, T., Lawo, J.-P., Wolfsegger, M.J., Allacher, P., Horling, F. (2014): A comparison of methods for classifying samples as truly specific with confirmatory immunoassays. Journal of pharmaceutical and biomedical analysis, 88: 27-35.
Doi: https://doi.org/10.1016/j.jpba.2013.08.013Whelan, S. F., Hofbauer, C. J., Horling, F. M., Allacher, P., Wolfsegger, M. J., Oldenburg, J., Male, C., Windyga, J., Tiede, A., Schwarz, H. P., Scheiflinger, F., & Reipert, B. M. (2013): Distinct characteristics of antibody responses against factor VIII in healthy individuals and in different cohorts of hemophilia A patients. Blood, 121(6): 1039-1048.
Doi: https://doi.org/10.1182/blood-2012-07-444877Pordes, A. G., Baumgartner, C. K., Allacher, P., Ahmad, R. U., Weiller, M., Schiviz, A. N., Schwarz, H. P., & Reipert, B. M. (2011): T cell-independent restimulation of FVIII-specific murine memory B cells is facilitated by dendritic cells together with toll-like receptor 7 agonist. Blood, 118(11): 3154–3162.
Doi: https://doi.org/10.1182/blood-2011-02-336198Jaki, T., Lawo, J.-P., Wolfsegger, M.J., Singer, J., Allacher, P., Horling, F. (2011): A formal comparison of different methods for establishing cut points to distinguish positive and negative samples in immunoassays. Journal of pharmaceutical and biomedical analysis, 55(5): 1148-1156.
Doi: https://doi.org/10.1016/j.jpba.2011.04.006Allacher, P., Baumgartner, C. K., Pordes, A. G., Ahmad, R. U., Schwarz, H. P., & Reipert, B. M. (2011): Stimulation and inhibition of FVIII-specific memory B-cell responses by CpG-B (ODN 1826), a ligand for Toll-like receptor 9. Blood, 117(1): 259-267.
Doi: https://doi.org/10.1182/blood-2010-06-289009Reipert, B. M., Allacher, P., Hausl, C., Pordes, A. G., Ahmad, R. U., Lang, I., Ilas, J., Windyga, J., Klukowska, A., Muchitsch, E. M., & Schwarz, H. P. (2010): Modulation of factor VIII-specific memory B cells. Haemophilia, 16(102): 25-34.
Doi: https://doi.org/10.1111/j.1365-2516.2008.01962.x
Mag. Dr. Peter AllacherOperative Leitung / Institute Krems BioanalyticsDipl.-Ing. Dr. Franz Herzog
Stiftungsprofessur / Leiter Massenspektrometrie / Institute Krems Bioanalytics
Institute Krems Bioanalytics
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
Colleselli, K., Ebeyer-Masotta, M., Neuditschko, B., Stierschneider, A., Pollhammer, C., Potocnjak, M., Hundsberger, H., Herzog, F., Wiesner, C. (2023): Beyond Pattern Recognition: TLR2 Promotes Chemotaxis, Cell Adhesion, and Migration in THP-1 Cells. Cells, 12(10): 1425.
Doi: https://doi.org/10.3390/cells12101425Stierschneider, A., Neuditschko, B., Colleselli, K., Hundsberger, H., Herzog, F., & Wiesner, C. (2023): Comparative and Temporal Characterization of LPS and Blue-Light-Induced TLR4 Signal Transduction and Gene Expression in Optogenetically Manipulated Endothelial Cells. Cells, 12(697).
Doi: https://doi.org/10.3390/cells12050697Koehnke, T., Liu, X., Haubner, S., Buecklein, V., Haenel, G., Krupka, C., Solis-Mezarino, V., Herzog, F., Subklewe, M. (2022): Integrated multiomic approach for identification of novel immunotherapeutic targets in AML. Biomarker Research, 10(1): 43.
Doi: https://doi.org/10.1186/s40364-022-00390-4
Dipl.-Ing. Dr. Franz HerzogStiftungsprofessur / Leiter Massenspektrometrie / Institute Krems...
Zulassung & Aufnahme – die nächsten Schritte
Sie haben einen Studiengang gefunden, der perfekt zu Ihnen passt? Sehr gut – das Wichtigste ist damit schon geschafft. Informieren Sie sich jetzt über die nächsten Schritte. Wir haben alle relevanten Informationen für Sie zusammengefasst.
Welche Zugangsvoraussetzungen gelten für unsere Bachelor-Studiengänge?
Ein Bachelor-Studium setzt voraus, dass Sie über eine allgemeine Hochschulreife – also über die Matura oder eine gleichwertige Qualifikation – verfügen. Falls Sie diese Voraussetzung nicht erfüllen, können Sie sich im Bereich Studieren ohne Matura darüber informieren, wie Sie sich trotzdem für einen unserer Bachelor-Studiengänge qualifizieren können.
Sie verfügen über ein ausländisches Zeugnis der allgemeinen Hochschulreife?
Wir prüfen die Gleichwertigkeit mit der allgemeinen Hochschulreife gemäß § 4 FHG (Fachhochschulgesetz) idgF, sobald die Online-Bewerbung vollständig abgeschlossen ist. Falls die Gleichwertigkeit nicht gegeben ist, erhalten Sie von uns alle Informationen über die nötigen Ergänzungsprüfungen.
Welchen Sprachnachweis benötigen Sie für unseren englischsprachigen Bachelor-Studiengang?
Wir werden Ihre Englischkenntnisse im Rahmen des Aufnahmegesprächs überprüfen. Gesonderte Zertifikate sind also nicht nötig.
Wichtig
Steht Ihnen der Präsenz- beziehungsweise Zivildienst noch bevor? Als männlicher Bewerber mit österreichischer Staatsbürgerschaft empfehlen wir Ihnen dringend, die Wehrpflicht noch vor dem Studium abzuleisten. So können Sie Ihr Studium ohne Unterbrechung durchführen und direkt nach dem Studium in das Berufsleben einsteigen.
Aufnahmegespräch
Wir möchten Sie gerne persönlich kennen lernen:
Im Rahmen der Online-Bewerbung ist ein Motivationsschreiben und ein kurzes Essay zu einem studiengangsrelevanten Thema zu verfassen. Vorgegebene Fragen zu Ihren Beweggründen, sowie die Anforderungen und Themenstellungen für Ihr Essay finden Sie in der Online-Bewerbung. Sie wählen eines der vorgeschlagenen Themen aus, führen eine Recherche durch um Ihren Wissenstand zu erweitern, setzen sich mit den Fragestellungen auseinander und bringen im Essay Ihren eigenen Standpunkt ein. Ihre Antworten sind in eigens dafür vorgesehene Eingabefelder einzutragen.
Für Ihr Aufnahmegespräch werden Ihr Motivationsschreiben und Ihr Essay als Grundlage herangezogen. Jede Bewerberin und jeder Bewerber erhält die Möglichkeit, sich in einem Einzelgespräch, das in der Regel mit dem Studiengangsleiter bzw. der Studiengangsleiterin geführt wird, vorzustellen. Neben dem persönlichen Kennenlernen werden Ihre Beweggründe für das Studium besprochen, das ausgewählte Thema und die Argumentation im Essay diskutiert, sowie die Relevanz dieses Themas für den Studiengang erörtert.
Das Aufnahmegespräch wird in der Unterrichtssprache des Studiengangs geführt und findet entweder online über Microsoft Teams oder Vorort statt.
Nach dem Aufnahmegespräch werden das Motivationsschreiben, der Essay und das Gespräch nach den inhaltlichen Aussagen, der Ausdruckskraft und der Argumentation bewertet.
Welche Aufnahmetermine gibt es?
Sie haben in der Regel die Wahl zwischen mehreren Aufnahmetagen, die mit Kontingenten hinterlegt sind. Im Zuge der Online-Bewerbung können Sie Ihren bevorzugten Termin auswählen. Um noch von der vollen Auswahl an Terminen profitieren zu können, empfehlen wir Ihnen, Ihre Bewerbung rechtzeitig durchzuführen.
Verschaffen Sie sich jetzt einen Überblick über die für Sie relevanten Termine:
Aufnahmegespräch
18.01.202429.01.202422.02.202427.02.202421.03.202422.03.202411.04.202426.04.202407.05.202413.05.202417.05.202424.05.202427.05.202403.06.202404.06.202421.06.202402.07.202410.07.202422.07.202405.08.2024Nachdem Sie Ihre Online Bewerbung erfolgreich abgeschlossen haben, wird Ihre Bewerbung auf Vollständigkeit und Richtigkeit geprüft. Sobald dieser Vorgang abgeschlossen ist, informieren wir Sie per E-Mail und bestätigen dabei auch den Aufnahmetermin.
Ende der Bewerbungsfrist für EU StaatsbürgerInnen | 15.04.2024 |
---|---|
Ende der Bewerbungsfrist für Nicht-EU StaatsbürgerInnen | 15.04.2024 |
Sie haben sich für einen unserer Studiengänge entschieden? Zuerst einmal: Gratulation und vielen Dank für Ihr Vertrauen! Gerne führen wir Sie Schritt für Schritt durch Ihre Online-Bewerbung.
Sie planen gerne voraus und möchten wissen, wann Ihr Studiengang startet? Hier werden Sie fündig!
Fragen zum Studienangebot?
Studienberatung
Sie haben Fragen zu den Zugangsvoraussetzungen, zum Aufnahmeverfahren und Co? Unsere Studienberatung hilft Ihnen gerne weiter.
Ask a Student
Richten Sie Ihre Fragen direkt an unsere Studierenden und holen Sie sich Erfahrungen aus erster Hand. Unsere Facebook-Gruppe macht es möglich.
Zur Facebook-Seite
Ask Lisa
Sie möchten Informationen aus erster Hand zum Studiengang Medical and Pharmaceutical Biotechnology? Kontaktieren Sie Lisa direkt, sie beantwortet Ihnen gerne alle Fragen zum Studium.
[email protected]Diese Studiengänge könnten Sie auch interessieren
