Bachelor-Studium Applied Chemistry
Recycling und die Verwertung von Abfallstoffen sind Themen, die Ihnen wichtig sind? Oder interessieren Sie sich doch eher für die Entwicklung von neuen Wirkstoffen in der Pharmaindustrie? Als Absolventin und Absolvent von Applied Chemistry finden Sie bahnbrechende Lösungen für die Problemstellungen unserer Zeit.
Bedingt durch den rasanten technologischen Fortschritt werden an Fachkräfte der modernen chemischen Industrie 4.0 zusätzliche Anforderungen gestellt. Neben dem essenziellen fundierten chemischen Wissen werden aufgrund des höheren Einsatzes vernetzter IT-Systeme Kompetenzen im Bereich der Prozessanalyse und des Prozessmanagements erwartet. Werden Sie an der IMC FH Krems zur Expertin oder zum Experten für moderne Chemie und erfüllen Sie all diese Erwartungen.
Der Studienbeitrag zzgl. 20,70 EUR ÖH-Beitrag gilt für EU- bzw. EWR-Staatsbürgerinnen und -Staatsbürger. Bitte beachten Sie, dass für Nicht-EU/EWR-Staatsbürgerinnen und -Staatsbürger eigene Studienbeiträge gelten.
Das Studium
Das Bachelor-Studium Applied Chemistry an der IMC FH Krems wird in englischer Sprache geführt und ist an die Anforderungen der modernen chemischen Industrie angepasst.
Dabei wird beispielsweise sehr stark auf die Chemometrie – also die Anwendung von statistischen Methoden zur optimalen Planung, Entwicklung und Auswahl von chemischen Verfahren und Experimenten – und die damit verbundene computerunterstützte Auswertung großer Datenmengen (Big-Data-Analyse) gesetzt.
Beides nimmt bei der Qualitätssicherung und bei der Online-Prozessoptimierung eine Schlüsselposition ein.
Das computerunterstützte Modellieren von Molekülen oder die computergestützte Simulation von Experimenten ist auch in der Pharmaindustrie Voraussetzung für effizientes Wirkstoffdesign.
Zudem sind in diesem innovativen Studienprogramm eine fundierte chemische Ausbildung und zukunftsträchtige Aspekte, wie der Einsatz nachwachsender Rohstoffe, Recycling und die Verwertung von Abfallstoffen, geschickt vereint.
Durch die Verknüpfung chemischer Fachgebiete mit computerbasierten Methoden werden jene Kompetenzen vermittelt, die vonseiten der Industrie zukünftig immer stärker gefordert werden.
Besonders interessant: Es besteht für unsere Studierenden mit ausgezeichnetem Studienerfolg die Möglichkeit, sich für den Erhalt eines sogenannten Leistungsstipendiums des Fachverbandes der chemischen Industrie zu qualifizieren. Alle Informationen dazu erhalten Sie im Rahmen Ihres Studiums.
Sie wollen mehr über das Studium erfahren? Eine Podcast-Folge mit unserem Studiengangsleiter Uwe Rinner sowie mit einem unserer Studierenden gibt zusätzliche Einblicke in den Studiengang.
Applied Chemistry leicht erklärt
Im Bereich der Naturwissenschaften ist fächerübergreifendes Denken von größter Bedeutung. Eine interdisziplinäre Herangehensweise ist notwendig, um fachliche Probleme effizient zu lösen und Antworten auf schwierige Fragestellungen zu finden.
Bei der Erstellung des Studienplans haben wir besonderen Wert auf eine optimale Abstimmung einzelner Themenbereiche gelegt. Auf diese Weise werden die Zusammenhänge zwischen diesen Teildisziplinen klar erörtert und interdisziplinäres Denken wird geschult.
Die Basisfächer der Chemie sind allgemeine, analytische, anorganische, organische und physikalische Chemie sowie Biochemie. Die angrenzenden Disziplinen Mathematik, Informatik, Statistik und Physik spielen für die Chemie eine ebenso wichtige Rolle wie auch die chemische Verfahrenstechnik.
Während des Studiums erhalten Sie eine fundierte Ausbildung in den oben genannten Disziplinen und haben somit die Möglichkeit, sich im Anschluss an die Grundausbildung in die für Sie interessanteste Richtung zu spezialisieren.
Komplexe Lehrinhalte werden in Übungen gemeinsam wiederholt. Auf diese Weise werden Anwendungsmöglichkeiten optimal verdeutlicht.
Auch bei diesen Übungen steht interdisziplinäres Verständnis im Vordergrund. Kleine Gruppen ermöglichen dabei intensiven Kontakt zwischen Studierenden und Vortragenden und garantieren individuelle Betreuung.
" Der Studiengang Applied Chemistry ist die direkte Antwort auf das veränderte Anforderungsprofil an chemische Fachkräfte, die den neuen Forderungen der Industrie durch eine praxisbezogene Ausbildung gerecht werden. Um die so wichtige inhaltliche Abstimmung von Lehrveranstaltungen zu ermöglichen, garantieren wir Ihnen fixe Laborplätze in allen Semestern dieses innovativen Studiums. Dadurch kommt es zu keinen Wartezeiten oder unnötigen Verzögerungen der Ausbildung und Sie können das Studium in der dafür vorgesehenen Zeit von 6 Semestern absolvieren. "
Studiengangsleiter Uwe Rinner
Erfolgskonzept: Theorie + Praxis
Das Studium umfasst 3 Säulen:
- 1
1. Die Grundlagen
In den Semestern 1-4
Am Anfang des Studiums steht die Einführung in die Basisfächer der Chemie und in die angrenzenden Disziplinen. Dabei erhalten Sie eine fundierte Ausbildung in der allgemeinen, analytischen, anorganischen, organischen und physikalischen Chemie sowie der Biochemie. Darüber hinaus beschäftigen Sie sich mit Mathematik, Informatik, Statistik, Physik und der chemischen Verfahrenstechnik.
Theoretisches Wissen wird in Übungen gefestigt und Sie erhalten eine praktische Ausbildung im chemischen Labor.
- 2
2. Der praktische Teil
Im 5. Semester
Um die theoretischen Inhalte aus dem Studium zu festigen, absolvieren Sie im fünften Semester ein 22-wöchiges Berufspraktikum. Vor und während des Praktikums werden Sie von uns betreut: Wir unterstützen Sie bei der Auswahl und stehen für Coaching-Gespräche zur Verfügung.
Dieses Berufspraktikum kann in Österreich oder im Ausland absolviert werden. Sie haben die Wahl: Entweder Sie sammeln Erfahrung in Universitäten oder der chemischen Industrie. Die IMC Fachhochschule Krems hat Kooperationen mit international renommierten Forschungseinrichtungen und wichtigen chemischen Konzernen und Sie profitieren von diesem gut etablierten Netzwerk.
Das Berufspraktikum wird als praktischer Teil der Bachelor-Arbeit angesehen und dient vielen Studierenden gleichzeitig als Wegweiser für eine spätere Karriere bei der jeweiligen Forschungsinstitution oder einem Konzern.
- 3
3. Die Spezialisierung
Im 6. Semester
Gegen Ende Ihres Studiums vertiefen Sie das bereits Erlernte und entscheiden sich für eine der beiden Spezialisierungen: Instrumental Analysis and Chemometrics oder Organic and Pharmaceutical Chemistry.
Die Spezialisierung Instrumental Analysis and Chemometrics vertieft die Kompetenz im instrumentell analytischen Bereich. Sie beschäftigen sich mit der statistischen Auswertung von Messergebnissen, der multidimensionalen Datenanalyse und der Versuchsplanung. Dadurch bereiten Sie sich bestens auf Problemstellungen der Produktsicherheit, Umweltanalytik, pharmazeutischen und forensischen Analytik sowie Polymeranalytik vor.
Bei der Spezialisierung Organic and Pharmaceutical Chemistry erlangen Sie vertiefte Kenntnisse im Bereich der computergesteuerten Simulation von Reaktionen und chemischen Prozessen und der organischen und pharmazeutischen Chemie. Derartige Kenntnisse sind vor allem für die Pharmaindustrie von Bedeutung und für die Produktion von Feinchemikalien von großer Wichtigkeit.
Studienplan
Was wird Sie im Studium genau erwarten? Der Studienplan gibt Ihnen eine Übersicht.
Klicken Sie auf die einzelnen Lehrveranstaltungen um nähere Informationen zu erhalten.
Course SWS ECTS Mathematics for Chemists Applied Mathematics I Applied Mathematics I – Theory 2 3 Applied Mathematics I – Theory
Module: Applied Mathematics IRoot module: Mathematics for ChemistsSemester: 1 Course code: AMTI1VO Contact hours per week: 2 ECTS: 3Course Content:- Fundamentals of mathematics; algebra; equations and inequations; solution sets
- Vectors; rules for calculating vectors and matrices; geometric applications
- Functions, elementary properties and geometric depiction of function, trigonometric functions, exponential functions, logarithms
Course outcome:Upon completion of this course, students are able to:
- describe fundamental rules of mathematics and perform algebraic calculations
- perform calculations with vectors and matrices
- present elementary functions and apply trigonometric functions
Applied Mathematics I – Exercise 1 2 Applied Mathematics I – Exercise
Module: Applied Mathematics IRoot module: Mathematics for ChemistsSemester: 1 Course code: AMEI1UE Contact hours per week: 1 ECTS: 2Course Content:Accompanying exercise for the "Applied Mathematics I – Theory” lecture; exercises promote attainment of the learning outcomes for the lecture.
Physics for Chemists Physics Physics for Chemists - Theory 3 4 Physics for Chemists - Theory
Module: PhysicsRoot module: Physics for ChemistsSemester: 1 Course code: PFCT1VO Contact hours per week: 3 ECTS: 4Course Content:- Fundamental physical values
- Mechanics, force, energy and work
- Electrostatics, electrical fields, potential, dipoles and field strength, electrical circuits
- Periodic motion and basic principles of wave theory
- Properties of light, interference, diffraction and coherence
Course outcome:Upon completion of this course, students are able to:
- describe fundamental physical values, explain fundamental physical concepts and perform calculations for exercises on mechanistic questions and energy conversion
- explain electrostatic and electrical phenomena
- calculate periodic motion
- outline the properties of electromagnetic radiation
Physics for Chemists – Laboratory 2 2 Physics for Chemists – Laboratory
Module: PhysicsRoot module: Physics for ChemistsSemester: 1 Course code: PFCL1LB Contact hours per week: 2 ECTS: 2Course Content:- Handling scientific measuring devices and performing physical experiments
- Evaluating measurements and estimating errors
- Measuring acceleration and viscosity
- Determining elementary charge and the Faraday constant
- Electrical circuits, determining electrical resistance
- Optics experiments (interference, diffraction)
Course outcome:Upon completion of this course, students are able to:
- record and evaluate results of measurements, estimate errors in the results generated and write reports
- perform and interpret simple, yet fundamental physical experiments, e.g. related to mechanics, optics and electricity
- describe physical processes on the basis of experiments
- Laboratory exercises support the achievement of the learning outcomes for the module by means of practical application of knowledge
General and Inorganic Chemistry General Chemistry I General and Inorganic Chemistry - Theory 5 7 General and Inorganic Chemistry - Theory
Module: General Chemistry IRoot module: General and Inorganic ChemistrySemester: 1 Course code: GCT1VO Contact hours per week: 5 ECTS: 7Course Content:- Units of measurement and dimensional analysis
- Atomic structure, the periodic table and basics of chemical bonding
- Naming system for inorganic compounds
- Mole, amounts of substances, chemical reactions, stoichiometry
- Gases, liquids and solids
- Thermochemistry, basic principles of chemical thermodynamics and energetics, reaction kinetics
- Acids and bases, chemical equilibrium, solubility products and complex equilibrium
- Lewis structures and VSEPR theory
- Electrochemistry
- Fundamentals of radiochemistry
Course outcome:Upon completion of this course, students are able to:
- describe basic natural science terms and chemistry concepts
- name inorganic salts and compounds using correct chemistry terms and describe the structure
- perform stoichiometric calculations with molar masses (concentrations, limiting reagents, yield, gases)
- describe reactions in terms of energy and kinetics
- describe equilibrium reactions, summarise the fundamental concepts of pH value, solubility product and the law of mass action, and carry out corresponding sample calculations
- outline fundamental principles of electrochemistry
- explain the concepts of radiochemistry and radioactive decay using given examples
General and Inorganic Chemistry – Laboratory 4 5 General and Inorganic Chemistry – Laboratory
Module: General Chemistry IRoot module: General and Inorganic ChemistrySemester: 1 Course code: GCL1LB Contact hours per week: 4 ECTS: 5Course Content:Exercise accompanying the lecture “General and Inorganic Chemistry – Theory”
- Aspects of safety in chemistry laboratories and main rules of conduct, handling hazardous substances
- Basic chemistry techniques (distillation, extraction, crystallisation, chromatography)
- Precipitation reactions and reactions in aqueous solution
- Calorimetry and heat of solution
- Reaction kinetics and order of reactions
- Acid-base titration
- Electrochemical determination of equilibrium constants and conductivity
Course outcome:Upon completion of this course, students are able to:
- outline important safety regulations and rules of conduct, and explain regulations related to handling dangerous substances
- apply basic chemistry and natural science techniques
- carry out simple experiments on calorimetry, reaction kinetics and measurement analysis
- perform basic electrochemical techniques and use them to determine concentration and equilibrium constants
This laboratory exercise supports the achievement of the learning outcomes for the module by means of practical application of knowledge.
Chemical Calculations - Stochiometry 2 2 Chemical Calculations - Stochiometry
Module: General and Inorganic ChemistryRoot module: General and Inorganic ChemistrySemester: 1 Course code: CCS1ILV Contact hours per week: 2 ECTS: 2Course Content:- Empirical formulas and percentage composition of chemical compounds
- Yield, turnover, limiting reactants
- Concentration and dilution, volume, calculations using laws of gases
- Thermochemical and kinetic calculations
- Titration and pH value; acids and bases, buffer solutions, solubility product and precipitation reactions
Course outcome:Upon completion of this course, students are able to:
- calculate empirical formulas for and the percentage composition of compounds and mixtures
- apply the concept of amounts of substances in order to calculate yield, turnover or limiting reactants
- perform calculations for concentration, dilution, gas volumes and reactions with gases
- carry out thermochemical and kinetic calculations
- work out chemical equilibrium in order to perform calculations of pH value, solubility product and similar equilibrium processes
Applied Informatics for Chemists Applied Informatics I Applied Informatics I: Information Technology and Data Management – Theory 2 2 Applied Informatics I: Information Technology and Data Management – Theory
Module: Applied Informatics IRoot module: Applied Informatics for ChemistsSemester: 1 Course code: AITI1VO Contact hours per week: 2 ECTS: 2Course Content:- Fundamentals of IT
- Operating systems and user interfaces
- Network architecture (internet, company network)
- Software: commercial applications and open source
- Efficient use of Microsoft Office applications, in particular Word (e.g. integrated tools, creating and formatting text files) and Excel (table structures and calculations, graphical analysis of data)
- Brief introduction to specialised applications (databases, statistics programs)
Course outcome:Upon completion of this course, students are able to:
- explain the basics of computer architecture and data processing, and name various operating systems and their characteristics
- describe the most important network-architecture concepts
- list the most important software applications for various uses
- use Microsoft Office applications (Word, Excel) to present and analyse scientific data
Applied Informatics I: Information Technology and Data Management – Computer Exercise 2 3 Applied Informatics I: Information Technology and Data Management – Computer Exercise
Module: Applied Informatics IRoot module: Applied Informatics for ChemistsSemester: 1 Course code: AIEI1UE Contact hours per week: 2 ECTS: 3Course Content:Exercise accompanying the “Applied Informatics I: Information Technology and Data Management – Theory” lecture
- Exercises in efficient use of Microsoft Word, structuring text files, incorporating graphics
- Using Excel, database structures and administration, spreadsheet analysis, pivot tables, graphical analysis of data
Course outcome:Upon completion of this course, students are able to:
- set up network architecture for home and company networks
- use Microsoft Office applications effectively to write protocols (Word), present data meaningfully, and carry out calculations and spreadsheet operations (Excel)
- analyse and compare data graphically
Course SWS ECTS Mathematics for Chemists Applied Mathematics II Applied Mathematics II – Theory 2 2 Applied Mathematics II – Theory
Module: Applied Mathematics IIRoot module: Mathematics for ChemistsSemester: 2 Course code: AMTII2VO Contact hours per week: 2 ECTS: 2Course Content:- Differential calculus of functions of a single variable
- Sequences and series
- Curve sketching
- Integral calculus of functions of a single variable; special functions
- Differential calculus of functions of several valuables; limit and continuity; numerical minimisation
Course outcome:Upon completion of this course, students are able to:
- solve differential equations for functions of one or more variables
- perform calculations with sequences and series
- carry out curve sketching
- perform integral calculus of functions of a single variable
Applied Mathematics II - Exercise 1 2 Applied Mathematics II - Exercise
Module: Applied Mathematics IIRoot module: Mathematics for ChemistsSemester: 2 Course code: AMEIII2UE Contact hours per week: 1 ECTS: 2Course Content:Accompanying exercise for the "Applied Mathematics I – Theory” lecture; exercises promote attainment of the learning outcomes for the lecture.
Introduction to Chemometrics Statistics and Introduction to Chemometrics Statistics and Introduction to Chemometrics – Theory 1 1 Statistics and Introduction to Chemometrics – Theory
Module: Statistics and Introduction to ChemometricsRoot module: Introduction to ChemometricsSemester: 2 Course code: STATT2VO Contact hours per week: 1 ECTS: 1Course Content:- Basic principles of statistics and chemometrics, hypotheses, significance level
- Data and sample collection, representative samples, population
- Distribution of data; normal distribution
- Mean, standard deviation and variance, confidence interval
- Detection and confidence limit
- Univariate analysis
- IT-supported calculation of statistical values
Course outcome:Upon completion of this course, students are able to:
- describe basic statistical concepts
- outline data, representative sample and sample collection methods (especially in connection with analytical chemistry questions)
- calculate mean, standard deviation and other basic statistical values, present data graphically for use in protocols and reports
- describe methods of univariate data analysis
- use computer programs to calculate basic statistical values
- calculate basic statistical values (mean, standard deviation, etc.) and present the results graphically for use in protocols and reports
Statistics and Introduction to Chemometrics – Exercise 1 1 Statistics and Introduction to Chemometrics – Exercise
Module: Statistics and Introduction to ChemometricsRoot module: Introduction to ChemometricsSemester: 2 Course code: STATE2UE Contact hours per week: 1 ECTS: 1Course Content:Accompanying exercise for the “Statistics and Introduction to Chemometrics – Theory” lecture; exercises promote attainment of the learning outcomes for the lecture.
Fundamentals of Physical Chemistry Physical Chemistry Physical Chemistry – Theory 2 3 Physical Chemistry – Theory
Module: Physical ChemistryRoot module: Fundamentals of Physical ChemistrySemester: 2 Course code: PHCT2VO Contact hours per week: 2 ECTS: 3Course Content:- Gases (ideal and real)
- Liquids and solutions (osmosis, freezing point depression)
- Introduction to chemical thermodynamics; thermochemistry, first law of thermodynamics, heat turnover in chemical reactions; applied examples
- Second law of thermodynamics
- Free energy and free enthalpy
- Chemical potential, law of mass action, equilibria
- Reaction kinetics
Course outcome:Upon completion of this course, students are able to:
- calculate the behaviour of ideal and real gases
- express physicochemical properties of solutions in mathematical terms and calculate physical properties
- carry out thermodynamic observations, calculate heat turnover in chemical reactions, and determine other indicators (e.g. enthalpy, entropy, free energy)
- discuss and calculate chemical equilibria
- answer questions on kinetics
Physical Chemistry - Laboratory 2 2 Physical Chemistry - Laboratory
Module: Physical ChemistryRoot module: Fundamentals of Physical ChemistrySemester: 2 Course code: PHCL2LB Contact hours per week: 2 ECTS: 2Course Content:Accompanying exercise for the “Physical Chemistry I – Theory” lecture
- Experiments designed to describe real gases
- Osmotic pressure, freezing point depression
- Thermochemical experiments to describe changes in energy in chemical reactions (calorimetry)
- Determining chemical potential
- Distribution equilibria
- Examining reaction kinetics in selected chemical reactions
Course outcome:Upon completion of this course, students are able to:
- perform physicochemical experiments in order to describe gases and liquids
- use calorimetric experiments in order to determine thermodynamic values
- carry out experiments to determine chemical potential
- define equilibria and determine equilibrium constants (distribution equilibria)
- plan experiments designed to determine kinetics in chemical reactions
Inorganic Chemistry Inorganic, Applied and Industrial Inorganic Chemistry Inorganic and Applied Inorganic Chemistry 3 4 Inorganic and Applied Inorganic Chemistry
Module: Inorganic, Applied and Industrial Inorganic ChemistryRoot module: Inorganic ChemistrySemester: 2 Course code: IAIC2VO Contact hours per week: 3 ECTS: 4Course Content:- The periodic table and periodic properties of the elements
- Overview of the chemical properties of the main-group and secondary-group elements, and properties of their compounds
- Key industrial compound
- Complex and coordination chemistry
Course outcome:Upon completion of this course, students are able to:
- predict the properties of chemical elements based on their position in the periodic table and their electron configuration
- give an overview of the chemical properties of the main-group and secondary-group elements and their compounds
- draw conclusions on and summarise the properties and applications of important non-metallic and metalloid compounds and compound classes
- list and describe industrial processes used to produce key basic chemicals
- explain and discuss the properties and structure of complex compounds, and describe their applications
Industrial Inorganic Chemistry and Material Sciences 2 2 Industrial Inorganic Chemistry and Material Sciences
Module: Inorganic, Applied and Industrial Inorganic ChemistryRoot module: Inorganic ChemistrySemester: 2 Course code: IIC2VO Contact hours per week: 2 ECTS: 2Course Content:- Overview of important inorganic chemical processes and production facilities in Austria and neighbouring regions
- Basic inorganic products (e.g. hydrogen, sulphur, halogens, technical gases) and basic chemicals
- Mineral fertilisers
- Metals and alloys
- Semiconductors and magnetic materials
Course outcome:Upon completion of this course, students are able to:
- explain the role of the inorganic chemicals industry in Austria and Europe
- describe the most important processes and types of facility for inorganic chemical technology
- describe production processes for inorganic basic chemicals
- describe and explain the most important metallic materials, and their properties and production methods
- define and explain the properties of high-value metal alloys, their applications and the technical options for cleaning them
Organic Chemistry Organic Chemistry I 2 3 Organic Chemistry I
Module: Organic ChemistryRoot module: Organic ChemistrySemester: 2 Course code: OCI2VO Contact hours per week: 2 ECTS: 3Course Content:- Representing organic structures
- Organic compounds: naming system and physical properties
- Saturated and unsaturated hydrocarbons; reactions of alkenes and alkynes; addition and radical reactions
- Conformational analysis for cyclic and acyclic organic compounds
- Isomerism; stereochemistry (various forms of chirality)
- Acidity, basicity, and the pKa concept in organic chemistry
- Alcohols, ether, haloalkanes and related functional groups
- Organometallic compounds and commutation
- Nucleophilic substitution and elimination
- Aromatic compounds and electrophilic aromatic substitution
Course outcome:Upon completion of this course, students are able to:
- correctly describe organic compounds and depict various conformers graphically
- discuss the theoretical relationship between structure/functional groups and physical properties (including acid-base behaviour, melting point, boiling point)
- describe the stereochemical properties of molecules
- explain and give reasons for the properties of selected compound classes (e.g. alkanes, alkenes, alkynes, alcohols, ether, haloalkanes, organometallic and aromatic compounds), identify possible production methods as well as reactions, and find solutions to practical examples
- describe and explain the mechanisms behind types of organic reaction
Analytical Chemistry Analytical Chemistry I Analytical Chemistry I: Basic Principles and Inorganic Analysis – Theory 2 3 Analytical Chemistry I: Basic Principles and Inorganic Analysis – Theory
Module: Analytical Chemistry IRoot module: Analytical ChemistrySemester: 2 Course code: ACTI2VO Contact hours per week: 2 ECTS: 3Course Content:- Basic principles and concepts of analytical chemistry; overview of analytical methods
- Measuring devices, precision, calibration
- Activities in the field of analytical chemistry
- Sample collection and preparation; digestion processes
- Principles of classical qualitative analysis
- Synthesising inorganic compounds for analytical study
- Precipitation reactions (classical separation process) and gravimetry
- Measurement analysis
- Titration (acid-base, complexometric titration, redox titration)
- Optical analysis procedures, photometry
Course outcome:Upon completion of this course, students are able to:
- describe basic principles of analytical chemistry, sample collection and general methods, and explain activities in the field of analytical chemistry
- describe digestion processes and typical wet-chemistry methods, and discuss their pros and cons
- synthesise inorganic compounds that will be analysed in practicals
- explain the concept of gravimetry and calculate the concentration of analytes in sample solutions
- carry out and propose suitable conditions for volumetric analysis (acid-base, complexometric or redox titration)
- describe optical (photometric) analysis procedures and calculate concentrations by applying the Lambert-Beer law
Analytical Chemistry I: Basic Principles and Inorganic Analysis – Laboratory 4 4 Analytical Chemistry I: Basic Principles and Inorganic Analysis – Laboratory
Module: Analytical Chemistry IRoot module: Analytical ChemistrySemester: 2 Course code: ACLI2LB Contact hours per week: 4 ECTS: 4Course Content:- Familiarisation with analytical devices and instruments
- Ion reactions (cations and anions), principles of the classical separation method; precipitation reactions and gravimetric methods
- Digestion reactions and common detection reactions for various elements
- Synthesising inorganic compounds for analytical purposes
- Serial dilution, measurement analysis; acid-base titration, back titration
- Photometry
Course outcome:Upon completion of this course, students are able to:
- describe the basic principles of analytical chemistry, sample collection and general analytic methods
- apply principles of classical qualitative analysis (wet chemistry procedures) to inorganic compounds
- utilise precipitation reactions for gravimetric analysis and carry out corresponding analysis
- perform volumetric analysis (acid-base, complexometric or redox titration)
- carry out photometric analysis (Lambert-Beer law) for quantitative studies and plan corresponding processes
Applied Informatics for Chemists Applied Informatics II Applied Informatics II: Chemistry Related Applications – Theory 1 1 Applied Informatics II: Chemistry Related Applications – Theory
Module: Applied Informatics IIRoot module: Applied Informatics for ChemistsSemester: 2 Course code: AITII2VO Contact hours per week: 1 ECTS: 1Course Content:- Visualisation tools for organic and inorganic molecules and biomolecules (e.g. Accelrys Draw, ChemDraw); representation of molecules and chemical compounds with the aid of computer-readable structure codes (e.g. SMILES); use in web-based simulation programs
- Use of electronic lab notebooks; computer-aided laboratory management; chemical databases; saving and processing measurements
- Overview of chemistry literature; chemistry-related journals and e-books
- Indexes of chemical compounds (e.g. CAS)
- Literature research in chemical databases using browser-based search tools (e.g. Scopus, Web of Science)
- Using literature databases, e.g. Mendeley or Endnote, to manage project-specific literature
- Citation rules and citing with the aid of literature databases
Course outcome:Upon completion of this course, students are able to:
- use chemical drawing software (e.g. Accelrys Draw, Chemdraw) to represent chemical reactions graphically and present molecules in computer-readable structure codes
- use electronic lab notebooks to record practical results
- identify relevant literature, and name and use databases for literature research
- apply citation rules correctly when referencing literature and use literature databases to manage specialist literature and ensure correct citation
Applied Informatics II: Chemistry Related Applications – Computer Exercise 1 2 Applied Informatics II: Chemistry Related Applications – Computer Exercise
Module: Applied Informatics IIRoot module: Applied Informatics for ChemistsSemester: 2 Course code: AIEII2UE Contact hours per week: 1 ECTS: 2Course Content:Exercise accompanying the “Applied Informatics II: Chemistry Related Applications – Theory” course
- Illustrating chemical structures, reactions and mechanisms with the aid of chemical drawing software
- Writing protocols using an electronic lab notebook
- Literature research for selected examples, organising chemical literature and correctly referencing literature in protocols and lab notebooks
Course outcome:Upon completion of this course, students are able to:
- use chemical drawing software (e.g. Accelrys Draw, Chemdraw) to illustrate chemical reactions graphically and record structural formulas for reports and protocols
- represent molecules in computer-readable structure codes and use web-based simulation applications to represent molecules
- use electronic lab notebooks to record practical results
- use databases for literature research, and find and organise information independently
- efficiently archive specialist literature and reference literature databases correctly
Course SWS ECTS Organic Chemistry Organic Chemistry II Organic Chemistry II - Theory 3 4 Organic Chemistry II - Theory
Module: Organic Chemistry IIRoot module: Organic ChemistrySemester: 3 Course code: OCTII3VO Contact hours per week: 3 ECTS: 4Course Content:- Carbonyl compounds; nucleophile addition and condensation reactions; a,b-unsaturated carbonyl compounds
- Carboxylic acids and carboxylic acid derivatives
- Amines and their reactions
- Cycloadditions and pericyclic rearrangements; theoretical principles (Woodward-Hoffmann rules)
- Fragmentation reactions
- Retrosynthetic analysis and synthesis planning
Course outcome:Upon completion of this course, students are able to:
- describe the properties of selected compound classes (e.g. carbonyl compounds, carboxylic acids and their derivatives, and amines), identify possible production methods as well as reactions, and solve practical examples
- discuss and explain cycloadditions and pericyclic reactions and their underlying theoretical principles (Woodward-Hoffmann rules)
- describe fragmentation reactions and solve practical examples
- carry out retrosynthetic analysis and utilise organic chemical reactions in synthesis planning
Organic Chemistry II - Laboratory 6 7 Organic Chemistry II - Laboratory
Module: Organic Chemistry IIRoot module: Organic ChemistrySemester: 3 Course code: OCLII3LB Contact hours per week: 6 ECTS: 7Course Content:- Basics of laboratory techniques for handling organic compounds
- Performing organic reactions (one-step and multi-step synthesis) discussed in the lectures “Organic Chemistry I” and “Organic Chemistry II – Theory”
- Assembling apparatus, reaction mixture, processing and isolating organic products (chromatography, extraction, distillation, crystallisation)
- Monitoring the progression of reactions using a range of analytical methods
- Analysing substances using spectroscopic methods
Course outcome:Upon completion of this course, students are able to:
- use techniques for working with organic chemicals
- monitor the progression of reactions using analytical methods
- isolate and characterise products from the reaction mixture
- independently plan and carry out multi-step synthesis based on literature research
Analytical Chemistry Analytical Chemistry II Analytical Chemistry II: Quantitative Analytical Methods – Theory 2 3 Analytical Chemistry II: Quantitative Analytical Methods – Theory
Module: Analytical Chemistry IIRoot module: Analytical ChemistrySemester: 3 Course code: ACTII3VO Contact hours per week: 2 ECTS: 3Course Content:- Complexometry and precipitation titration
- Fundamental principles of electrochemical analysis methods
- Experiments using ion-sensitive electrodes
- Basics of methods for chromatographic separation and analysis
Course outcome:Upon completion of this course, students are able to:
- apply complexometric methods in quantitative analysis (e.g. titration with EDTA)
- describe various electrochemical methods used for analytical purposes and explain their fields of application
- describe the possible applications of ion-selective electrodes and explain their function
- describe basic chromatographic methods
Analytical Chemistry II: Quantitative Analytical Methods – Laboratory 3 4 Analytical Chemistry II: Quantitative Analytical Methods – Laboratory
Module: Analytical Chemistry IIRoot module: Analytical ChemistrySemester: 3 Course code: ACLII3LB Contact hours per week: 3 ECTS: 4Course Content:- Complexometric titration
- Potentiometry, conductometry and electrochemical protocols
- Experiments using ion-sensitive electrodes
- Introduction to chromatographic separation and analysis methods, electrophoresis
Course outcome:Upon completion of this course, students are able to:
- carry out chelatometric/complexometric titration
- use coulometric methods during analysis (e.g. water determination using the Karl Fischer method)
- use ion-selective electrodes to identify metallic ions and calculate concentrations on that basis
- utilise simple chromatographic methods
Applied Informatics for Chemists Applied Informatics III Applied Informatics III: Introduction to Programming – Theory 1 1 Applied Informatics III: Introduction to Programming – Theory
Module: Applied Informatics IIIRoot module: Applied Informatics for ChemistsSemester: 3 Course code: AITIII3VO Contact hours per week: 1 ECTS: 1Course Content:- Overview of programming tools and the logical foundations of computer languages
- Options for programming macros, program code and automation tools to solve specialised problems in the field of chemistry (e.g. reading measurement data from Excel sheets or databases)
- Fundamentals of Virtual Basic for Applications (VBA) and Python as simple, efficient programming languages in MS Office applications
Course outcome:Upon completion of this course, students are able to:
- name and explain selected programming languages
- implement macros for specialised problems in the field of chemistry and set up automation tools for Office applications
- plan and program simple programs and scripts for Virtual Basic for Applications (VBA) and Python
Applied Informatics III: Introduction to Programming – Exercise 1 2 Applied Informatics III: Introduction to Programming – Exercise
Module: Applied Informatics IIIRoot module: Applied Informatics for ChemistsSemester: 3 Course code: AIEIII3UE Contact hours per week: 1 ECTS: 2Course Content:- Programming macros, scripts and automation tools to solve specialised problems in the field of chemistry (e.g. reading measurement data from Excel sheets or databases)
- Programming in Virtual Basic for Applications (VBA) as a simple, efficient programming languages in MS Office applications, and in Python for uses specific to chemistry; programming simple loops
Course outcome:Upon completion of this course, students are able to:
- program simple macros
- use Virtual Basic for Applications for Office applications
- program short loops (Python) that can be used e.g. in laboratory exercises to control temperatures or water pressure in apparatus
Chemometrics and Data Management Introduction to Chemometrics and Data Management Chemometrics and Data Management: Applied Statistics and Advanced Methods – Theory 1 2 Chemometrics and Data Management: Applied Statistics and Advanced Methods – Theory
Module: Introduction to Chemometrics and Data ManagementRoot module: Chemometrics and Data ManagementSemester: 3 Course code: CDMT3VO Contact hours per week: 1 ECTS: 2Course Content:- Multivariate methods; factor analysis; principle component analysis
- Regression analysis
- Graphical presentation of measurements
- Using Excel and specialised statistics programs to calculate and present statistical analyses
Course outcome:Upon completion of this course, students are able to:
- explain how chemometric methods work and how they can be used
- solve simple multivariate data analysis problems
- present the results of calculations graphically
- evaluate chemometric methods on specific examples
- carry out statistical analysis with the aid of commonly used computer programs
Chemometrics and Data Management: Applied Statistics and Advanced Methods – Exercise 1 2 Chemometrics and Data Management: Applied Statistics and Advanced Methods – Exercise
Module: Introduction to Chemometrics and Data ManagementRoot module: Chemometrics and Data ManagementSemester: 3 Course code: CDME3UE Contact hours per week: 1 ECTS: 2Course Content:Exercise accompanying the “Chemometrics and Data Management II: Applied Statistics and Advanced Methods – Theory” lecture; exercises support attainment of the learning outcomes for the lecture.
Course outcome:Spectroscopic Methods and Structure Elucidation Spectroscopic Methods, Structure Elucidation Spectroscopic Methods and Structure Elucidation – Theory 1 1 Spectroscopic Methods and Structure Elucidation – Theory
Module: Spectroscopic Methods, Structure ElucidationRoot module: Spectroscopic Methods and Structure ElucidationSemester: 3 Course code: SMET3VO Contact hours per week: 1 ECTS: 1Course Content:- Overview of spectroscopic methods for clarifying and determining structure
- IR spectroscopy
- NMR spectroscopy – 1H, 13C and basics of 2D NMR spectroscopy
- Mass spectrometry
- UV spectroscopy
- Overview of spectroscopic methods for online monitoring of chemical reactions and processes
Course outcome:Upon completion of this course, students are able to:
- explain the operational principles (physical principles) of spectroscopic methods
- select appropriate methods for given tasks and apply them
- interpret and analyse spectra from the aforementioned methods, and clarify organic structures (e.g. by combining various spectroscopic data)
Spectroscopic Methods and Structure Elucidation – Exercise 1 2 Spectroscopic Methods and Structure Elucidation – Exercise
Module: Spectroscopic Methods, Structure ElucidationRoot module: Spectroscopic Methods and Structure ElucidationSemester: 3 Course code: SMEE3UE Contact hours per week: 1 ECTS: 2Course Content:Exercise accompanying the “Spectroscopic Methods and Structure Elucidation - Theory” lecture; exercises support attainment of the learning outcomes for the lecture; ideally, examples produced in the “Organic Chemistry II – Laboratory” course will be evaluated and chemical compounds characterised
Scientific Methods and Tools Scientific Skills and Writing 2 2 Scientific Skills and Writing
Module: Scientific Methods and ToolsRoot module: Scientific Methods and ToolsSemester: 3 Course code: SSW3ILV Contact hours per week: 2 ECTS: 2Course Content:- Preparation of budgets and project plans for reporting
- Structure and compilation of protocols, reports and conclusions
- Applying citation rules
Course outcome:Upon completion of this course, students are able to:
- plan experiments and small projects, and present the results of planning in the form of a report
- formulate protocols and present data professionally
- correctly apply citation rules
Course SWS ECTS Organic Chemistry Industrial Organic Chemistry Industrial Organic Chemistry and Petrochemistry 2 3 Industrial Organic Chemistry and Petrochemistry
Module: Industrial Organic ChemistryRoot module: Organic ChemistrySemester: 4 Course code: IOPC4VO Contact hours per week: 2 ECTS: 3Course Content:- The organic chemicals industry (Austria/Europe)
- Questions facing the chemicals industry and principal techniques, industrial facilities and reactors
- Basic organic products and fine chemicals: crude oil and refinery products, C1-C4 components, aromatic compounds, explosives, dyes, pharmaceutical products, odorants
- Environmental aspects of the organic chemicals industry
Course outcome:Upon completion of this course, students are able to:
- explain the role of the organic chemicals industry in Austria and Europe
- describe techniques and industrial facilities, and present the most important organic chemical technologies
- talk about production processes for the most important basic products and fine chemicals (C1-C4 components, aromatic compounds, explosives, dyes, pharmaceutical products and odorants)
- critically analyse the industry’s sustainability, and the environmental problems it faces
Polymer Chemistry 2 2 Polymer Chemistry
Module: Industrial Organic ChemistryRoot module: Organic ChemistrySemester: 4 Course code: POC4VO Contact hours per week: 2 ECTS: 2Course Content:- Overview of synthetic and natural polymers
- Chemical and physical properties and structures of organic polymers
- Analytical investigation methods in polymer chemistry
- Different types of polymerisation; polymerisation catalysts
- Intelligent materials, conductive polymers, special applications for polymeric materials
- Environmental aspects of synthetic and natural polymers
Course outcome:Upon completion of this course, students are able to:
- describe and expand on the most important polymers and polymerisation methods
- describe and compare methods for analysing polymers
- explain the mechanisms behind polymerisation catalysts (tacticity)
- describe and discussion potential applications of polymers as intelligent materials (e.g. conductivity, energy production, etc.)
Analytical Chemistry Analytical Chemistry III Analytical Chemistry III: Instrumental Analysis – Theory 2 3 Analytical Chemistry III: Instrumental Analysis – Theory
Module: Analytical Chemistry IIIRoot module: Analytical ChemistrySemester: 4 Course code: ACTIII4VO Contact hours per week: 2 ECTS: 3Course Content:- Specially selected sample collection methods for chemical trace analysis
- Infrared spectroscopy in analytical chemistry, with examples from the chemicals industry
- Chromatographic methods (gas chromatography (GC); MPLC; HPLC)
- Mass spectrometry (MS) and coupled systems (HPLC-MS and GC-MS)
- Optical atomic spectroscopy (e.g. AAS, molecular spectroscopy, fluorescence and emission measurement)
- X-ray fluorescence spectroscopy
Course outcome:Upon completion of this course, students are able to:
- describe processes from sample collection and processing through to analytical determination of analytes
- describe the theoretical principles behind instrumental analytical procedures and outline potential applications for particular methods
- describe important devices for instrumental analysis (see above), explain their functions and define their applications
Analytical Chemistry III: Instrumental Analysis – Laboratory 3 3 Analytical Chemistry III: Instrumental Analysis – Laboratory
Module: Analytical Chemistry IIIRoot module: Analytical ChemistrySemester: 4 Course code: ACLIII4LB Contact hours per week: 3 ECTS: 3Course Content:- Sample collection and preparation for instrumental analytical determination
- Qualitative and quantitative analysis of complex mixtures using infrared spectroscopy (on-line analysis)
- Quantitative determination using the chromatographic methods GC and HPLC
- Analysis of complex mixtures using HPLC-MS, and determination of constituent substances using mass spectrometry
- Optical atomic spectroscopy (e.g. AAS)
Course outcome:Upon completion of this course, students are able to:
- apply sample collection and processing methods in practice
- use infrared spectroscopy to analyse complex mixtures
- select chromatographic methods for particular analytical questions and carry them out in practice
- utilise optical analysis methods (e.g. AAS)
Physical Chemistry - Advanced Advanced Physical Chemistry 2 3 Advanced Physical Chemistry
Module: Physical Chemistry - AdvancedRoot module: Physical Chemistry - AdvancedSemester: 4 Course code: APHC4VO Contact hours per week: 2 ECTS: 3Course Content:- Basic principles of wave mechanics; quantum mechanics
- The Schrödinger equation
- Spin and multi-electron systems
- Electron transfer and its significance for spectroscopy
- Applied problems in fluorescence and luminescence
- Symmetry and point groups
Course outcome:Upon completion of this course, students are able to:
- explain the fundamental principles of wave and quantum mechanics
- talk about the significance of calculation models for wave mechanics (Schrödinger equation) and perform calculations in simple examples
- discuss electron transfer and its significance for spectroscopic methods and explain related applications (fluorescence spectroscopy and luminescence)
- describe the basic principles of group theory
Biochemistry and Bio Science Biochemistry and Bioanalytics Biochemistry and Bioanalytics – Theory 3 4 Biochemistry and Bioanalytics – Theory
Module: Biochemistry and BioanalyticsRoot module: Biochemistry and Bio ScienceSemester: 4 Course code: BCBAT4VO Contact hours per week: 3 ECTS: 4Course Content:- Basic aspects of biological systems and biochemistry
- Amino acids and proteins (properties, structure and function)
- Enzymes and enzyme kinetics
- Nucleotides; RNA; DNA
- Carbohydrates, glycobiology
- Lipids
- Primary metabolism (e.g. glycolysis, citric acid cycle, oxidative phosphorylation)
- Bioanalytical methods (e.g. spectroscopic, gel chromatographic and electrophoretic methods)
- Fundamentals of proteomics
Course outcome:Upon completion of this course, students are able to:
- explain fundamental matters in biochemistry and physico-chemical principles
- explain the structural principles of biomolecules in terms of their chemical basis and discuss their functions in living systems
- describe enzyme-catalysed reactions in terms of kinetics
- describe the key metabolic pathways used to produce energy and to break down and synthesise biomolecules
- outline bioanalytical methods for characterising and producing biomolecules
Biochemistry and Bioanalytics – Laboratory 3 4 Biochemistry and Bioanalytics – Laboratory
Module: Biochemistry and BioanalyticsRoot module: Biochemistry and Bio ScienceSemester: 4 Course code: BCBAL4LB Contact hours per week: 3 ECTS: 4Course Content:Laboratory exercises supplementing theory lectures
- Basic biochemistry techniques
- Electrophoretic methods
- Gel chromatographic methods
- Spectroscopic methods
- Enzyme kinetics
Course outcome:Upon completion of this course, students are able to:
- apply basic biochemistry techniques
- use electrophoretic, gel chromatographic and spectroscopic methods for analysis and isolation
- carry out enzyme-kinetic experiments
Bioorganic Chemistry 1 1 Bioorganic Chemistry
Module: Biochemistry and Bio ScienceRoot module: Biochemistry and Bio ScienceSemester: 4 Course code: BOC4VO Contact hours per week: 1 ECTS: 1Course Content:- Fundamental types of organic and chemical reactions in biological systems
- Mechanistic explanation of enzyme-catalysed reactions
- Overview of the various main metabolic pathways for secondary metabolites (acetate metabolism; shikimate pathway; mevalonate pathway; alkaloid synthesis)
- Important secondary metabolites and their influence on metabolism
Course outcome:Upon completion of this course, students are able to:
- describe the basic types of organic chemical reactions in secondary metabolism
- outline and expand on mechanistic explanations of enzymatic reactions
- name the principal metabolic pathways and assign natural products to the corresponding pathways
- describe examples of important medical and industrial secondary metabolites and the interactions between them during metabolism
Chemical Engineering and Process Control Chemical Engineering 2 3 Chemical Engineering
Module: Chemical Engineering and Process ControlRoot module: Chemical Engineering and Process ControlSemester: 4 Course code: CHE4VO Contact hours per week: 2 ECTS: 3Course Content:- Reactor types, industrial chemical plants
- Fundamentals of fluid dynamics and rheology
- Mass and heat transfer
- Reaction kinetics of production-scale chemical processes
- Sustainability and economic viability of chemical processes
Course outcome:Upon completion of this course, students are able to:
- describe important reactor types and explain fundamental industrial-scale processes and chemical plants
- carry out calculations for configuration of plant with regard to mass and heat transfer and rheological properties
- evaluate chemical plants with regard to these properties
- select and develop scale-up models according to process specifications
Process Control and Design 1 1 Process Control and Design
Module: Chemical Engineering and Process ControlRoot module: Chemical Engineering and Process ControlSemester: 4 Course code: PCD4UE Contact hours per week: 1 ECTS: 1Course Content:- Components and devices for chemical processes
- Configuration and dimensioning of devices
- Instrumentation and analysis
- Scale-up from laboratory scale to production scale
- Fundamentals of process control systems
Course outcome:Upon completion of this course, students are able to:
- design components and devices for management of chemical processes
- devise process analytics
- evaluate plant specifications for a process management system and communicate these to other experts accordingly
Toxicological and Environmental Aspects Sustainability in the Chemical Industry Sustainable Methods and Renewables in Industry 1 1 Sustainable Methods and Renewables in Industry
Module: Sustainability in the Chemical IndustryRoot module: Toxicological and Environmental AspectsSemester: 4 Course code: SMRI4VO Contact hours per week: 1 ECTS: 1Course Content:- Principles of sustainability and overview of renewable resources (e.g. cellulose, lignin), their properties and possible applications in industrial processes
- Biofuels
- Sustainable plastics and biopolymers
- Cellulose fibres
- New materials made from renewable resources
Course outcome:Upon completion of this course, students are able to:
- present and discuss the importance and relevance of sustainable technologies
- name sustainable materials that are important in industrial processes and explain technological processes
- apply critical considerations to solve typical environmental problems by using renewable resources and sustainable methods
Green Chemistry and Waste Utilisation 1 1 Green Chemistry and Waste Utilisation
Module: Sustainability in the Chemical IndustryRoot module: Toxicological and Environmental AspectsSemester: 4 Course code: GCWU4VO Contact hours per week: 1 ECTS: 1Course Content:- Basic outline of waste production (including environmental perspectives) and pollution; classification of waste and opportunities to extract resources and energy
- Various approaches to obtaining resources from waste
- Sustainable technologies for preventing waste in industrial processes and reducing toxic materials in chemical processes
- Evaluation and comparison of processes with regard to sustainability
- Industrial recycling methods
Course outcome:Upon completion of this course, students are able to:
- explain the ecological and economic ramifications of waste production and the significance of waste as a valuable resource in the future
- describe different types of pollution
- present methods of waste utilisation, and describe and evaluate industrial chemical options for waste utilisation
- draw up low-toxicity alternatives to widespread processes
Quality Management in the Chemical Industry Quality Control, GMP and GLP 1 1 Quality Control, GMP and GLP
Module: Quality Management in the Chemical IndustryRoot module: Quality Management in the Chemical IndustrySemester: 4 Course code: QCGG4VO Contact hours per week: 1 ECTS: 1Course Content:- Fundamentals of quality management in industry and research
- Overview of the quality management cycle
- Structures and function of quality control
Course outcome:Upon completion of this course, students are able to:
- explain the basic principles of quality management
- draw up standard operating procedures (SOPs)
- perform a risk analysis
- evaluate the aforementioned documents
Course SWS ECTS Practical Training Semester Practical Training (22 weeks à 30 hours) 0 28 Practical Training (22 weeks à 30 hours)
Module: Practical Training SemesterRoot module: Practical Training SemesterSemester: 5 Course code: PT5BOPR Contact hours per week: 0 ECTS: 28Course Content:Practical application of theory
Practical Training Coaching Seminar 1 2 Practical Training Coaching Seminar
Module: Practical Training SemesterRoot module: Practical Training SemesterSemester: 5 Course code: PTCS5SE Contact hours per week: 1 ECTS: 2Course Content:- Supervision during the practical training
- Preparing progress reports
- Preparing final reports
- Critical reflection on the practical training
Course SWS ECTS Toxicological and Environmental Aspects Toxicology 1 2 Toxicology
Module: Toxicological and Environmental AspectsRoot module: Toxicological and Environmental AspectsSemester: 6 Course code: TOX6VO Contact hours per week: 1 ECTS: 2Course Content:- Classification of toxic materials and various biological mechanisms of action of toxins
- Detoxification methods
- Toxicology of various classes of substances (e.g. metals, organic materials, biological materials, radioactive substances)
- Toxic materials as potential pharmaceutical compounds
- Handling toxins (principally workplace safety)
Course outcome:Upon completion of this course, students are able to:
- classify and evaluate chemical compounds in terms of their potential as biological hazards
- explain various mechanisms of action of toxins (based on their chemical structure) in the body
- discuss methods of detoxification and their applications
- categorise and analyse applications for toxic materials as potential pharmaceutical structures
- develop protocols for effective workplace safety
Environmental Aspects in Industry and Ecology 1 1 Environmental Aspects in Industry and Ecology
Module: Toxicological and Environmental AspectsRoot module: Toxicological and Environmental AspectsSemester: 6 Course code: EAIE6VO Contact hours per week: 1 ECTS: 1Course Content:- Ecosystems, biospheres and ecology
- Atmospheric chemistry, the greenhouse effect, smog, low-level ozone
- Natural biogeochemical material cycles
- Chemistry in bodies of water
- Natural and man-made emissions and pollutants
Course outcome:Upon completion of this course, students are able to:
- discuss the concepts and basic terms ecosystem, biosphere and ecology
- present atmospheric chemistry effects and explain materials cycles
- illustrate chemical processes in bodies of water
- identify natural and man-made emissions of pollutants and their long-term effects
Quality Management in the Chemical Industry Regulatory Affairs and Industrial Quality Management Law and Regulations 1 1 Law and Regulations
Module: Regulatory Affairs and Industrial Quality ManagementRoot module: Quality Management in the Chemical IndustrySemester: 6 Course code: LAR6VO Contact hours per week: 1 ECTS: 1Course Content:- Chemicals Act
- Employee Protection Act
- Hazardous Substances Order
Course outcome:Upon completion of this course, students are able to:
- explain the basic principles of the Chemicals Act and the Hazardous Substances Order
- demonstrate the basic principles of the Employee Protection Act and the Hazardous Substances Order
- evaluate and clasify tasks in the context of the legislation named above
- evaluate potential everyday risks in the laboratory
- plan storage of chemicals and hazardous substances
Principles of Quality Assurance 1 1 Principles of Quality Assurance
Module: Regulatory Affairs and Industrial Quality ManagementRoot module: Quality Management in the Chemical IndustrySemester: 6 Course code: PQA6VO Contact hours per week: 1 ECTS: 1Course Content:- The ISO 9001 quality management system standard
- Quality management plans
- Documentation systems
- Project planning
Course outcome:Upon completion of this course, students are able to:
- explain the basic principles of the ISO 9001 standard (Quality management systems – Requirements)
- prepare, analyse and evaluate basic quality management plans on the basis of given tasks
Concepts of Business Models 1 1 Concepts of Business Models
Module: Regulatory Affairs and Industrial Quality ManagementRoot module: Quality Management in the Chemical IndustrySemester: 6 Course code: CBM6VO Contact hours per week: 1 ECTS: 1Course Content:- Regulations for establishing small businesses (approvals, types of company, requirements)
- Budgeting for small projects and research plans
- Sources of funding for research projects and small businesses
Course outcome:Upon completion of this course, students are able to:
- discuss basic regulations that must be complied with when establishing a small business
- perform budgeting for small projects and research projects
- name sources of funding and funding bodies that provide support to research projects and start-ups
Elective 1: Instrumental Analysis and Chemometrics Special Topics: Food and Environmental Issues Applied Analysis for Food, Environmental Issues and Pharmaceuticals – Theory 3 4 Applied Analysis for Food, Environmental Issues and Pharmaceuticals – Theory
Module: Special Topics: Food and Environmental IssuesRoot module: Elective 1: Instrumental Analysis and ChemometricsSemester: 6 Course code: S1_AAFT6VO Contact hours per week: 3 ECTS: 4Course Content:- Principal analytical questions and problems in analysing complex mixtures and samnbsp;ples
- Analytical chemistry in connection with the environment and the food and pharmaceuticals sectors
- Legal requirements; threshold levels related to the environment and in the food and pharmaceuticals sectors, and toxicological aspects of harmful substances
- Basic composition of foodstuffs, possible ingredients and contaminants; quality requirements for food
- Aspects of environmental analysis, common environmental toxins, pesticides and herbicides
- Composition and structure of pharmaceutical products
- Detecting pharmaceutical products in environmental or human samples (e.g. for forensic experiments and drugs testing)
Course outcome:Upon completion of this course, students are able to:
- discuss suitable sample collection and processing methods for complex analytical problems
- outline legal frameworks relating to contamination of the environment, and in the food and pharmaceuticals sectors
- answer complex questions related to the environment and the food and pharmaceuticals sectors
Applied Analysis for Food, Environmental Issues and Pharmaceuticals – Laboratory 3 3 Applied Analysis for Food, Environmental Issues and Pharmaceuticals – Laboratory
Module: Special Topics: Food and Environmental IssuesRoot module: Elective 1: Instrumental Analysis and ChemometricsSemester: 6 Course code: S1_AAFL6LB Contact hours per week: 3 ECTS: 3Course Content:- Sample collection and processing in connection with complex mixtures from the environment and the food and pharmaceuticals sectors
- Specific analytical methods to detect problem waste in the environment and the food and pharmaceuticals sectors (chromatographic methods, sensors and database checking
Course outcome:Upon completion of this course, students are able to:
- select methods for analysing complex mixtures and independently analyse samples (using chromatographic methods, sensors or other analytical tools)
- discuss the value of trace analysis findings (thresholds, detection levels)
- evaluate findings professionally and present them graphically
Multivariate Data Analysis and Design of Experiments Multivariate Data Analysis (MVDA) and Design of Experiments (DoE) – Methods 1 2 Multivariate Data Analysis (MVDA) and Design of Experiments (DoE) – Methods
Module: Multivariate Data Analysis and Design of ExperimentsRoot module: Elective 1: Instrumental Analysis and ChemometricsSemester: 6 Course code: S1_MVDAM6VO Contact hours per week: 1 ECTS: 2Course Content:- Advanced methods of multivariate analysis
- Statistical experiment design
- Using such methods to prepare work plans
- Use of statistical computer programs to prepare and evaluate work plans
Course outcome:Upon completion of this course, students are able to:
- apply advanced statistical and multivariate data analysis methods, and summarise and evaluate data
- prepare experiment designs, in order to produce meaningful results and develop methods following a small number of experiments
- use statistics software to draw up experiment designs and evaluate data
Multivariate Data Analysis (MVDA) and Design of Experiments (DoE) – Exercise 1 1 Multivariate Data Analysis (MVDA) and Design of Experiments (DoE) – Exercise
Module: Multivariate Data Analysis and Design of ExperimentsRoot module: Elective 1: Instrumental Analysis and ChemometricsSemester: 6 Course code: S1_MVDAL6UE Contact hours per week: 1 ECTS: 1Course Content:Exercise accompanying the “Multivariate Data Analysis (MVDA) and Design of Experiments – Methods” lecture; exercises support attainment of the learning outcomes for the lecture; ideally, examples produced in the “Applied Analysis for Food, Environmental Issues and Pharmaceuticals – Laboratory” course will be discussed
Data Mining and Visualisation Data Mining and Visualisation – Methods 1 2 Data Mining and Visualisation – Methods
Module: Data Mining and VisualisationRoot module: Elective 1: Instrumental Analysis and ChemometricsSemester: 6 Course code: S1_DMVM6VO Contact hours per week: 1 ECTS: 2Course Content:- Statistical treatment of large volumes of data for complex analytical tasks and measurements
- Cluster analysis, outlier tests
- Basic principles of time series analysis
- Graphical evaluation of received volumes of data and identification of data clusters
Course outcome:Upon completion of this course, students are able to:
- process large volumes of data as generated by analytical instruments and processes
- evaluate data and draw critical conclusions
- process volumes of data graphically and prepare them for use in reports and protocols
Data Mining and Visualisation – Exercise 1 1 Data Mining and Visualisation – Exercise
Module: Data Mining and VisualisationRoot module: Elective 1: Instrumental Analysis and ChemometricsSemester: 6 Course code: S1_DMVL6UE Contact hours per week: 1 ECTS: 1Course Content:Exercise accompanying the “Multivariate Data Analysis (MVDA) and Design of Experiments – Methods” lecture; exercises support attainment of the learning outcomes for the lecture; ideally, examples produced in the “Applied Analysis for Food, Environmental Issues and Pharmaceuticals – Laboratory” course will be discussed
Elective 2: Organic and Pharmaceutical Chemistry Advanced Organic Chemistry Advanced Organic Chemistry – Heterocycles and Molecules of Life 2 3 Advanced Organic Chemistry – Heterocycles and Molecules of Life
Module: Advanced Organic ChemistryRoot module: Elective 2: Organic and Pharmaceutical ChemistrySemester: 6 Course code: S2_AOCH6VO Contact hours per week: 2 ECTS: 3Course Content:- Heterocyclic chemistry (aromatic and non-aromatic compounds; compounds containing sulphur, nitrogen and oxygen)
- Carbohydrates
- Amino acids and peptides
- Synthesis planning (combinatorial synthesis) and statistical methods for experiment planning (experiment design)
Course outcome:Upon completion of this course, students are able to:
- identify various classes of heterocyclic compounds, and describe and compare synthesis and typical reactions in mechanistic terms
- discuss the biological properties of carbohydrates, explain reactions of such compounds and plan synthesis using statistical methods (experiment design)
- identify the properties of amino acids and peptides, carry out peptide synthesis and compare the results
Advanced Organic Chemistry Laboratory – Method Development 3 3 Advanced Organic Chemistry Laboratory – Method Development
Module: Advanced Organic ChemistryRoot module: Elective 2: Organic and Pharmaceutical ChemistrySemester: 6 Course code: S2_AOCL6LB Contact hours per week: 3 ECTS: 3Course Content:Laboratory exercises supplementing theory lecture
- Synthesising heterocyclic compounds, carbohydrates and peptides
- Using statistical methods to optimise certain reaction sequences (experiment design)
- Using advanced analytical methods to measure the progression of reactions (including real-time measurement)
Course outcome:Upon completion of this course, students are able to:
- identify synthesis processes for heterocyclic compounds, carbohydrates and peptides (literature research) and plan the various stages independently
- employ statistical tools to optimise particular processes, critically evaluate the results and use this as the basis for developing methods
- independently select analytical methods for monitoring reactions
Computational Methods and Molecular Modelling Computational Methods and Molecular Modelling – Theory 1 1 Computational Methods and Molecular Modelling – Theory
Module: Computational Methods and Molecular ModellingRoot module: Elective 2: Organic and Pharmaceutical ChemistrySemester: 6 Course code: S2_CMMT6VO Contact hours per week: 1 ECTS: 1Course Content:- Fundamentals of computer-aided methods for chemical compounds
- Theory of force fields and molecular dynamics for structure visualisation and structure validation
- Questions relating to energy (calculation of free energy)
- Use of computer-aided modelling to solve specialised questions in organic and pharmaceutical chemistry (structure-function relationships), as well as processes (molecular liquids) and biochemistry (biological macromolecules)
- Databases of biomolecules and crystal structure
Course outcome:Upon completion of this course, students are able to:
- produce three-dimensional models of organic compounds and important substrates for pharmaceuticals (force field theory; molecular dynamics process)
- explain and calculate biological interactions between substrates and enzymes, solve questions relating to energy and carry out basic docking studies
- predict the physical properties of liquids and solids
- use databases as resources for biomolecule structure data
Computational Methods and Molecular Modelling – Exercise 1 2 Computational Methods and Molecular Modelling – Exercise
Module: Computational Methods and Molecular ModellingRoot module: Elective 2: Organic and Pharmaceutical ChemistrySemester: 6 Course code: S2_CMML6UE Contact hours per week: 1 ECTS: 2Course Content:Exercise accompanying the “Computational Methods and Molecular Modeling - Theory” lecture; exercises support attainment of the learning outcomes for the lecture; ideally, computer-based methods will be applied to compounds produced in the “Advanced Organic Chemistry Laboratory” course
Medicinal and Pharmaceutical Sciences Medicinal and Pharmaceutical Chemistry: Traditional Drugs and Biopharmaceuticals 2 3 Medicinal and Pharmaceutical Chemistry: Traditional Drugs and Biopharmaceuticals
Module: Medicinal and Pharmaceutical SciencesRoot module: Elective 2: Organic and Pharmaceutical ChemistrySemester: 6 Course code: S2_MPC6VO Contact hours per week: 2 ECTS: 3Course Content:- Basic pharmaceutical chemistry concepts
- Drug interactions, structure-activity relationships of biologically active compounds, structural properties of medicinal substances
- Pharmaceutical lead structures and active ingredient development
- Fundamentals of pharmacokinetics and pharmacodynamics
- Specific groups of medicines and diseases
- Systematology of active ingredients, and key classes of drugs
- Introduction to biopharmaceuticals as an important class of pharmaceutical products
- Overview of treatment of selected diseases (e.g. cancer, diabetes)
Course outcome:Upon completion of this course, students are able to:
- explain the basic principles and concepts of pharmaceutical chemistry
- explain structure-activity relationships, and discuss the stages of active ingredient development
- explain the fundamentals of pharmacokinetics and pharmacodynamics and illustrate with regard to selected drugs
- define various groups of active ingredients (with different biological targets) and explain them using selected examples
- explain the significance of biopharmaceuticals, naming examples
Pharmaceutics 1 1 Pharmaceutics
Module: Medicinal and Pharmaceutical SciencesRoot module: Elective 2: Organic and Pharmaceutical ChemistrySemester: 6 Course code: S2_PHA6VO Contact hours per week: 1 ECTS: 1Course Content:- Basic principles for the preparation of drug dosage forms
- Requirements of dosage forms (e.g. dosing, stability, tolerability, shape, flavour)
- Formulation development processes
- Additives in the development of dosage forms
Course outcome:Upon completion of this course, students are able to:
- distinguish between active ingredients and dosage forms
- describe different dosage forms and discuss the requirements placed on them
- list additives used in drugs and discuss the development and production of dosage forms
Scientific Methods and Tools Bachelor Seminar and Bachelor Paper 1 8 Bachelor Seminar and Bachelor Paper
Module: Scientific Methods and ToolsRoot module: Scientific Methods and ToolsSemester: 6 Course code: BPA6BASE Contact hours per week: 1 ECTS: 8Course Content:- Writing the bachelor paper, including project planning
- Topic-focused literature research
- Applying content-related and formal academic requirements
- Presentation of selected chapters
Course outcome:Upon completion of this course, students are able to independently write an academic paper, in accordance with content-related and formal academic requirements, with the aid of the IMC Krems’ Manual for the Formal Composition of Scholarly Papers.
Bachelor Exam 0 3 Bachelor Exam
Module: Scientific Methods and ToolsRoot module: Scientific Methods and ToolsSemester: 6 Course code: BEX6AP Contact hours per week: 0 ECTS: 3Course Content:- Presentation of bachelor paper and case study provided for the bachelor exam
- Oral examination on the bachelor paper (in accordance with section 16 Fachhochschul-Studiengesetz [University of Applied Sciences Studies Act]), and
- the links to related subjects on the curriculum (in accordance with section 16 University of Applied Sciences Studies Act)
Course outcome:In the bachelor exam, students demonstrate their ability to:
- present their bachelor paper and the question they addressed in a manner appropriate to the target audience, and defend the paper before an expert committee
- outline the significance of the findings for professional practice and research, and present supporting arguments
- answer follow-up questions on degree-programme subjects and the links between them, and justify their answers
Besonderheiten
Warum sollten Sie sich für das Bachelor-Studium Applied Chemistry in Krems entscheiden?
Beste Chancen am Arbeitsmarkt
Eines vorweg: Es handelt sich um einen neuen Studiengang, der genau auf die Anforderungen der modernen chemischen Industrie abgestimmt wurde und dadurch einzigartig ist. Dementsprechend gut sind die Jobaussichten der Absolventinnen und Absolventen.
Kontakte mit Firmenvertretern können bereits sehr früh geknüpft werden. Dadurch haben Absolventinnen und Absolventen von Applied Chemistry beste Chancen am Arbeitsmarkt. Zudem sind Sie auf den internationalen Arbeitsmarkt optimal vorbereitet, da der Studiengang in englischer Sprache gehalten wird und grundsätzlich sehr international ausgerichtet ist.
Modernste Inhalte mit Inputs direkt von der Industrie
Von Beginn an werden ein fundiertes chemisches Grundverständnis und moderne, zukunftsorientierte Methoden gleichsam gefördert. Computerbasierte Modelle und statistische Methoden zur optimalen Datenerfassung und Verarbeitung sind im Curriculum prominent vertreten.
In perfekt aufeinander abgestimmten Vorlesungen betrachten Sie die Lehrinhalte von unterschiedlichen Seiten. Dadurch können Sie die Zusammenhänge der unterschiedlichen Disziplinen besser erkennen. Aktuelle Lehrinhalte werden Ihnen auch durch Lehrende aus der chemischen Industrie – und dadurch gleich mit Live-Einblicken in die Industrie – vermittelt.
Übung macht den Meister
Ein Herzstück des Studiums: die fundierte praktische Ausbildung im Labor. Wir setzen einen verstärkten Fokus auf die synthetische Herstellung von Präparaten in direkter Kombination mit modernen Analysemethoden, chemischen Datenbanken und Softwaretools.
Dadurch wird der Grundstein für synthetische Aufgabenbereiche – wie zum Beispiel die Wirkstoffsynthese im Pharmabereich oder die Synthese von Materialien im Polymer- und Werkstoffbereich – und analytische Fragestellungen wie die Qualitätssicherung gesetzt. Außerdem machen Sie sich fit für Aufgaben im Umwelt- und pharmazeutischen Bereich und bei Behörden.
Newsletter & Infomaterial
Zusätzliche Informationen gefällig? Abonnieren Sie Ihren personalisierten Newsletter oder bestellen Sie Broschüren über unsere Studiengänge direkt zu sich nach Hause.
Jetzt zusätzliche Informationen anfordernKompetenzbereiche
Nach Abschluss des Bachelor-Studiums Applied Chemistry verfügen Sie neben fundierten fachlichen und wissenschaftlichen Fähigkeiten auch über eine hohe praktische Kompetenz.
Die Forschung hat in Applied Chemistry, so wie es der Name schon sagt, einen sehr hohen Stellenwert. Deswegen vermitteln wir Ihnen die wissenschaftlichen Kompetenzen, um Forschungsprozesse nachvollziehen und erfolgreich mitgestalten zu können.
Die Chemie bedient sich der Erkenntnisse aus angrenzenden Disziplinen wie Mathematik und Physik. Stark interdisziplinär und vernetzt zu denken, hilft Ihnen also dabei, Probleme zu lösen und die Forschung voranzutreiben.
Im Studium lernen Sie, wie Sie computerbasierte Methoden optimal einsetzen. Das Ziel: Sie können große Datenmengen analysieren, visualisieren und interpretieren. Dadurch werden Ihre Experimente im Labor präziser.
Diese Herangehensweise spart also Zeit und Ressourcen – und wird bei Ihren zukünftigen Arbeitsgebern besonders geschätzt.
Der neue Studiengang wurde anhand der Bedürfnisse der Industrie konzipiert und macht Sie gleichsam für Industrie und Forschung fit. Sie lernen, Ihr fundiertes theoretisches Wissen im Labor anzuwenden und modernste Forschungs- und Arbeitsmethoden einzusetzen.
Karrierewege nach dem Bachelor-Studium Applied Chemistry
Das englischsprachige Bachelor-Studium Applied Chemistry öffnet zahlreiche Türen. Nach Ihrem Abschluss haben Sie aufgrund der Internationalität der Ausbildung auch außerhalb Österreichs beste Jobchancen.
Als Absolventin oder Absolvent werden Sie im Bereich der chemischen Industrie Fuß fassen. Nach dem Studium entscheiden Sie sich entweder für den direkten Berufseinstieg oder für ein aufbauendes Studium im Bereich der Chemie oder der verwandten technischen Naturwissenschaften.
- Mögliche Arbeitsfelder
- Pharmaindustrie
- Lebensmittelindustrie
- Umweltbehörden
- Polymerchemie
- Grundstoffchemie
- Chemische Recyclingbetriebe
- Verarbeitung nachwachsender Rohstoffe
- Grundlagenforschung (nach Aufbaustudium)
Es gibt viele Gründe, warum wir auf unsere Hochschule stolz sind. Finden Sie heraus, was uns besonders macht.
Was Krems besonders lebenswert macht? Lernen Sie Krems als Studierenden-Stadt kennen.
Von Studiumsorganisation bis Praktikums- und Berufsberatung. Informieren Sie sich über das Plus an Services.
Brauchen Sie Hilfe bei der Entscheidung fürs Studium? Unsere Studienberatung berät Sie gerne in einem persönlichen Gespräch.
Im Fokus: Applied Chemistry
Klicken Sie sich durch die Videos des Studiengangs.
Lernen Sie unsere Fachhochschule von einer ganz neuen und persönlichen Seite virtuell kennen.
Unser Team
Lernen Sie das Kern-Team des Bachelor-Studiengangs Applied Chemistry kennen.
Prof.(FH) Priv.-Doz. DI Dr. Uwe Rinner
Studiengangsleitung Applied Chemistry
Institut Biotechnologie
- Habilitation (Organische Chemie)
- Habilitation (Organische Chemie)
- Applied ChemistryBachelor of Science in Engineering / Vollzeit
- Surface TechnologyBerufsbegleitend
-
Synthese und industrielle Verwendung von Hydroxytyrosol
Department of Life Sciences
Wicks, C. Hudlicky, T., Rinner, U. (2021): Morphine alkaloids: History, biology, and synthesis. THe Alkaloids: Chemistry and Biology, 86: 145 - 342.
Doi: https://doi.org/10.1016/bs.alkal.2021.04.001Dedic, D., Dorniak, A., Rinner, U., Schöfberger, W. (2021): Recent Progress in (Photo-)-Electrochemical Conversion of CO2 With Metal Porphyrinoid-Systems. Frontiers in Chemistry, 9(540): 685619.
Doi: https://doi.org/10.3389/fchem.2021.685619Babaee, S., Zarei, M., Zolfigol, M. A., Khazalpour, S., Hasani, M., Rinner, U., Schirhagl, R., Norouzi, S., Rostamnia, S. (2021): Synthesis of biological based hennotannic acidbased salts over porous bismuth coordination polymer with phosphorous acid tags. RSC Advances, 11(4): 2141-2157.
Doi: https://doi.org/10.1039/D0RA06674ENowikow, C., Fuerst, R., Kauderer, M., Dank, C., Schmid, W., Hajduch, M., Rehulka, J., Gurska, S., Mokshyna, O., Polishchuk, P., Zupkó, I., Dzubak, P., & Rinner, U. (2019): Synthesis and biological evaluation of cis-restrained carbocyclic combretastatin A-4 analogs: Influence of the ring size and saturation on cytotoxic properties. Bioorganic & medicinal chemistry, 27(19): 115032.
Doi: https://doi.org/10.1016/j.bmc.2019.07.048Amer, H., Mimini, V., Schild, D., Rinner, U., Bacher, H., Potthast, A., Rosenau, T. (2019): Gram-scale economical synthesis of trans-coniferyl alcohol and its corresponding thiol. Holzforschung, 74(2): 197-202.
Doi: https://doi.org/10.1515/hf-2018-0297
Prof.(FH) Priv.-Doz. DI Dr. Uwe RinnerStudiengangsleitung Applied ChemistryStudiengangsleitung Applied Chemistry
Prof.(FH) Priv.-Doz. DI Dr. Uwe Rinner
Kernkompetenzen
- Habilitation (Organische Chemie)
- Habilitation (Organische Chemie)
Lisa Staffa, M.A.
Business & Career Services / Department of Business
Business & Career Services
- Applied ChemistryBachelor of Science in Engineering / Vollzeit
Lisa Staffa, M.A.Business & Career Services / Department of BusinessProf.(FH) Dr. Christian Klein
Professor Department of Life Sciences
Institut Biotechnologie
- Wirkstoffdesign
- Biochemische Systemtheorie
- Molecular Modelling und Chemoinformatik
- Applied ChemistryBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
-
Entwicklung von therapeutischen Peptiden für Krebs- und regenerative Medizin
Department of Life Sciences
-
Entwicklung einer Design-Pipeline für innovative Protein-Protein-Interaktionshemmer
Projektleitung, Department of Life Sciences
-
Entwicklung neuer immunregulierender Peptide und geschlechtsspezifischer organotypischer Zellmodelle für humane Sepsis
Department of Life Sciences
-
Funktionale Validierung prädiktiver Biomarker für zielgerichtete Krebstherapien
Department of Life Sciences
Stierschneider, A., Grünstäudl, P., Colleselli, K., Atzler, J., Klein, C., Hundsberger, H., Wiesner, C. (2021): Light-Inducible Spatio-Temporal Control of TLR4 and NF-κB-Gluc Reporter in Human Pancreatic Cell Line. International Journal of Molecular Sciences, 22(17): 9232.
Doi: https://doi.org/10.3390/ijms22179232Hundsberger, H., Stierschneider, A., Sarne, V., Ripper, D., Schimon, J., Weitzenböck, H. P., Schild, D., Jacobi, N., Eger, A., Atzler, J., Klein, C. T., & Wiesner, C. (2021): Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Molecules (Basel, Switzerland), 26(3): 717.
Doi: https://doi.org/10.3390/molecules26030717Ablinger, C., Geisler, S. M., Stanika, R. I., Klein, C. T., & Obermair, G. J. (2020): Neuronal α2δ proteins and brain disorders. Pflugers Archiv : European journal of physiology, 472(7): 845-863.
Doi: https://doi.org/10.1007/s00424-020-02420-2Jacobi, N., Smolinska, V., Seeboeck, R., Stierschneider, A., Klein, C., Hofmann, E., Wiesner, C., Mohr, T., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2017): 3D Anti-Cancer drug discovery models: A promising approach for precision medicine. In IMC Fachhochschule Krems GmbH (Hrsg.), Online-Tagungsband FHK Forschungsforum 2017. Krems: FFH.
Hundsberger, H., Koppensteiner, A., Hofmann, E., Ripper, D., Pflüger, M., Stadlmann, V., Klein, C. T., Kreiseder, B., Katzlinger, M., Eger, A., Forster, F., Missbichler, A., & Wiesner, C. (2017): A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells. SLAS discovery : advancing life sciences R & D, 22(8): 1035–1043.
Doi: https://doi.org/10.1177/2472555217697435Volk, K., Breunig, S. D., Rid, R., Herzog, J., Bräuer, M., Hundsberger, H., Klein, C., Müller, N., & Önder, K. (2017): Structural analysis and interaction studies of acyl-carrier protein (acpP) of Staphylococcus aureus, an extraordinarily thermally stable protein. Biological chemistry, 398(1): 125-133.
Doi: https://doi.org/10.1515/hsz-2016-0185Hofmann, E., Seeboeck, R., Jacobi, N., Obrist, P., Huter, S., Klein, C., Oender, K., Wiesner, C., Hundsberger, H., & Eger, A. (2016): The combinatorial approach of laser-captured microdissection and reverse transcription quantitative polymerase chain reaction accurately determines HER2 status in breast cancer. Biomarker research, 7(4): 8.
Doi: https://doi.org/10.1186/s40364-016-0062-7Jacobi, N., Smolinska, V., Stierschneider, A., Klein, C., Oender, K., Lechner, P., Kaiser, H., Hundsberger, H., Eger, A. (2016): Development of organotypic cancer models for the identification of individualized cancer therapies. In FH des BFI Wien (Hrsg.), Online-Tagungsband FHK Forschungsforum 2016. Wien: FFH.
Solca, F., Dahl, G., Zoephel, A., Bader, G., Sanderson, M., Klein, C.T., Kraemer, O., Himmelsbach, F., Haaksma, E., Adolf, G. R. (2012): Target Binding Properties and Cellular Activity of Afatinib (BIBW 2992), an Irreversible ErbB Family Blocker. Journal of Pharmacology and Experimental Therapeutics, 343(2): 342-350.
Doi: https://doi.org/10.1124/jpet.112.197756Klein, C.T., Kaiser, D., Ecker, G. (2004): 3D Topolgical Distance-Based Descriptors for Use in QSAR and Diversity Analysis. Journal of Chemical Information and Computer Sciences, 44(1): 200-209.
Doi: https://doi.org/10.1021/ci0256236Klein, C.T., Kaiser, D., Kopp, S., Chiba, P., Ecker, G. (2002): Similarity-Based SAR as Tool for Early ADME Profiling. Journal of Computer-Aided Molecular Design, 16: 785-793.
Doi: https://doi.org/10.1023/A:1023828527638Klein, C.T., Kaiblinger, N., Wolschann, P. (2002): Internally Defined Distances in 3D-Quantitative Structure-Activity Relationships. Journal of Computer-Aided Molecular Design, 16: 79-93.
Doi: https://doi.org/10.1023/A:1016308417830Mayer, B., Klein, C.T. (2000): Influence of Solvation on the Helix Forming Tendency of Nonpolar Amino Acids. Journal of Molecular Structure: THEOCHEM, 532(1-3): 213-226.
Doi: https://doi.org/10.1016/S0166-1280(00)00559-5Buchbauer, G., Klein, C.T., Wailzer, B., Wolschann, P. (2000): Threshold-Based Structure-Activity Relationships of Pyrazines with Bell Pepper Flavor. Journal of Agricultural and Food Chemistry, 48(9): 4273-4278.
Doi: https://doi.org/10.1021/jf000192hKlein, C.T., Polheim, D., Viernstein, H., Wolschann, P. (2000): A Method for Estimation of the Free Energies of Complexation between ß-Cyclodextrin and Guest Molecules. Journal of Inclusion Phenomena, 36(4): 409-423.
Doi: https://doi.org/10.1023/A:1008063412529Klein, C.T., Pircher, H., Wailzer, B., Buchbauer, G., Wolschann, P. (2000): Quantitative Structure-Property Study on Pyrazines with Bell Peper Flavor. Scientific Pharmaceutica, 68(1): 41-56.
Doi: https://doi.org/10.3797/scipharm.aut-00-04Klein, C.T., Lawtrakul, L., Hannongbua, S., Wolschann, P. (2000): Accessible Charges as Sensitive Descriptors in Structure-Activity Relationships. A Study on HEPT-based HIV-1 RT Inhibitors. Scientific Pharmaceutica, 68(1): 25-40.
Doi: https://doi.org/10.3797/scipharm.aut-00-03Klein, C.T., Viernstein, H., Wolschann, P. (2000): Free Energy Prediction of Complexation between ß-Cyclodextrin and Guest Molecules: External Predictivity of MR and PLS Models. Scientific Pharamaceutica, 68(1): 15-24.
Doi: https://doi.org/10.3797/scipharm.aut-00-02Klein, C.T., Polheim, D., Viernstein, H., Wolschann, P. (2000): Predicting the Free Energies of Complexation between Cyclodextrins and Guest Molecules: Linear versus Nonlinear Models. Pharamaceutical Research, 17: 358-365.
Doi: https://doi.org/10.1023/A:1007565409407Mayer, B., Klein, C.T., Köhler, G. (1999): Selective Assembly of Cyclodextrins on Poly(ethylene oxide) Poly(propylene oxide) Copolymers. Journal of Computer-Aided Molecular Design, 13: 373-383.
Doi: https://doi.org/10.1023/A:1008095501870Klein, C.T., Mayer, B. (1999): Sources for Switches and Structure Formation in Metabolic Pathways. Biosystems, 51(1): 41-52.
Doi: https://doi.org/10.1016/S0303-2647(99)00012-XKlein, C.T., Mayer, B., Köhler, G., Wolschann, P. (1998): Systematic Stepsize Variation: An Efficient Method for Searching the Conformational Space of Polypeptides. Journal of Computational Chemistry, 19(13): 1470-1481.
Doi: https://doi.org/10.1002/(SICI)1096-987X(199810)19:13<1470::AID-JCC4>3.0.CO;2-NKlein, C.T. (1998): Hysteresis-Driven Pattern Formation in Biochemical Networks. Journal of Theoretical Biology, 194(2): 263-274.
Doi: https://doi.org/10.1006/jtbi.1998.0757Mayer, B., Marconi, G., Klein, C.T., Köhler, G., Wolschann, P. (1997): Structural Analysis of Host–Guest Systems. Methyl-substituted Phenols in beta;-Cyclodextrin. Journal of inclusion phenomena and molecular recognition in chemistry, 29: 79-93.
Doi: https://doi.org/10.1023/A:1007920606983Klein, C.T., Mayer, B. (1997): A Model for Pattern Formation in Gap-Junction Coupled Cells. Journal of Theoretical Biology, 186(1): 107-115.
Doi: https://doi.org/10.1006/jtbi.1996.0337Grabner, G., Monti, S., Marconi, G., Mayer, B., Klein, C.T., Köhler, G. (1997): Spectroscopic and Photochemical Study of Inclusion Complexes of Dimethoxybenzenes with Cyclodextrins. The Journal of Physical Chemistry , 100(51): 20068-20075.
Doi: https://doi.org/10.1021/jp962231rMarconi, G., Mayer, B., Klein, C.T., Köhler, G. (1996): The structure of higher order C60-fullerene-γ-cyclodextrin complexes. Chemical Physics Letters, 260(5-6): 589-594.
Doi: https://doi.org/10.1016/0009-2614(96)00915-3Köhler, G., Grabner, G., Klein, C.T., Marconi, G., Mayer, B., Monti, S., Rechthaler, K., Rotkiewicz, K., Viernstein, H., Wolschann, P. (1996): Structure and spectroscopic Properties in Cyclodextrin Inclusion Complexes. In Szejtli, J., Szente, L. (Hrsg.), Proceedings of the Eighth International Symposium on Cyclodextrins (215-220). Budapest, Hungary: Springer, Dordrecht.
Doi: https://doi.org/10.1007/978-94-011-5448-2_46Klein, C.T., Mayer, B., Köhler, G., Wolschann, P. (1996): Influence of solvation on helix formation of poly-alanine studied by multiple annealing simulations. Journal of Molecular Structure: THEOCHEM, 372(1): 33-43.
Doi: https://doi.org/10.1016/S0166-1280(96)04745-8Klein, C. T., & Seelig, F. F. (1995): Turing structures in a system with regulated gap-junctions. Bio Systems, 35(1): 15–23.
Doi: https://doi.org/10.1016/0303-2647(94)01478-pKlein, C.T., Mayer, B., Köhler, G., Mraz, K., Reiter, S., Viernstein, H., Wolschann, P. (1995): Solubility and Molecular Modeling of Triflumizole-ß-cyclodextrin Inclusion Complexes. Journal of inclusion phenomena and molecular recognition in chemistry, 22: 15–32.
Doi: https://doi.org/10.1007/BF00706495
Prof.(FH) Dr. Christian KleinProfessor Department of Life SciencesDI (FH) Anita Koppensteiner
Wissenschaftliche Mitarbeit / Department of Life Sciences
Institut Biotechnologie
- Protein Produktion, Aufreinigung und Analyse
- Zellbasierte Testsysteme/Mikroskopie
- Biochemische Testmethoden und Analysen
- Applied ChemistryBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Department of Life Sciences
-
Die Rolle von NFR2 in der Melanomprogression - Einblicke in die Mechanismen von Metastasen
Department of Life Sciences
-
Extremophiles
Department of Life Sciences
-
MEMESA – Metastasierendes Melanom Spezifische Antikörper
Department of Life Sciences
-
AdsorbTech: Entwicklung einer neuen Technologieplattform für Peptid-basierte therapeutische Apheresesysteme
Department of Life Sciences
-
Etablierung innovativer, vaskulärer Äquivalente zur Entwicklung von Detektionsmodulen für Hochdurchsatz-Verfahren und zur Entwicklung von anti-entzündlichen Peptiden
Department of Life Sciences
Hundsberger, H., Koppensteiner, A., Hofmann, E., Ripper, D., Pflüger, M., Stadlmann, V., Klein, C. T., Kreiseder, B., Katzlinger, M., Eger, A., Forster, F., Missbichler, A., & Wiesner, C. (2017): A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells. SLAS discovery : advancing life sciences R & D, 22(8): 1035–1043.
Doi: https://doi.org/10.1177/2472555217697435Schütz, B., Koppensteiner, A., Schörghofer, D., Kinslechner, K., Timelthaler, G., Eferl, R., Hengstschläger, M., Missbichler, A., Hundsberger, H., & Mikula, M. (2016): Generation of metastatic melanoma specific antibodies by affinity purification. Scientific reports, 6: 37253.
Doi: https://doi.org/10.1038/srep37253Pflüger, M., Kapuscik, A., Lucas, R., Koppensteiner, A., Katzlinger, M., Jokela, J., Eger, A., Jacobi, N., Wiesner, C., Hofmann, E., Onder, K., Kopecky, J., Schütt, W., Hundsberger, H. (2013): A combined impedance and AlphaLISA-based approach to identify anti-inflammatory and barrier-protective compounds in human endothelium. Journal of biomolecular screening, 18(1): 67-74.
Doi: https://doi.org/10.1177/1087057112458316
DI (FH) Anita KoppensteinerWissenschaftliche Mitarbeit / Department of Life SciencesProf.(FH) Mag. Dana Mezricky
Professorin Department of Life Sciences
Institut Biotechnologie
- GMP/GLP
- Molekulare Biologie
- Proteinchemie / Immunologie / Biochemische Alalysemethoden
- Applied ChemistryBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Department of Life Sciences
-
Extremophiles
Department of Life Sciences
-
Co-Kultivierung von Mikroorganismen
Department of Life Sciences
Náhlík, V., Zachleder, V., Čížková, M., Bišová, K., Singh, A., Mezricky, D., Řezanka, T., Vítová, M. (2021): Growth under Different Trophic Regimes and Synchronization of the Red Microalga Galdieria sulphuraria. Biomolecules, 11(7)(939).
Čížková, M., Mezricky, P., Mezricky, D., Rucki, M., Zachleder, V., Vítová, M. (2020): Bioaccumulation of Rare Earth Elements from Waste Luminophores in the Red Algae, Galdieria phlegrea. Waste Biomass Valor.
Doi: https://doi.org/10.1007/s12649-020-01182-3Rezanka, T., Rezanka, M., Mezricky, D., Vítova, M. (2020): Lipidomic analysis of diatoms cultivated with silica nanoparticles. Phytochemistry, 177: 112452.
Doi: https://doi.org/10.1016/j.phytochem.2020.112452Čížková, M., Mezricky, D., Rucki, M., Tóth, T. M., Náhlík, V., Lanta, V., Bišová, K., Zachleder, V., & Vítová, M. (2019): Bio-mining of Lanthanides from Red Mud by Green Microalgae. Molecules , 24(7): 1356.
Doi: https://doi.org/10.3390/molecules24071356Řezanka, T., Kaineder, K., Mezricky, D., Řezanka, M., Bišová, K., Zachleder, V., & Vítová, M. (2016): The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda. Photosynthesis Research, 130(1-3): 335-346.
Doi: https://doi.org/10.1007/s11120-016-0263-9
Prof.(FH) Mag. Dana MezrickyProfessorin Department of Life SciencesProf.(FH) DI Dominik Schild
Professor Department of Life Sciences
Institut Biotechnologie
- Fermentationsentwicklung
- Biochemische Verfahrenstechnik
- Prozessingenieur
- Applied ChemistryBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
-
Nachhaltiges biologisches Recycling von umweltbedenklichen Stoffen (Rare Earth Elements) aus Elektronikabfall und Abwässern
Projektleitung, Department of Life Sciences
-
Synthese und industrielle Verwendung von Hydroxytyrosol
Projektleitung, Department of Life Sciences
-
Extremophiles
Department of Life Sciences
-
Co-Kultivierung von Mikroorganismen
Projektleitung, Department of Life Sciences
-
Zellbasierte Testsysteme für bioaktive Substanzen
Department of Life Sciences
Hundsberger, H., Stierschneider, A., Sarne, V., Ripper, D., Schimon, J., Weitzenböck, H. P., Schild, D., Jacobi, N., Eger, A., Atzler, J., Klein, C. T., & Wiesner, C. (2021): Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Molecules (Basel, Switzerland), 26(3): 717.
Doi: https://doi.org/10.3390/molecules26030717Amer, H., Mimini, V., Schild, D., Rinner, U., Bacher, H., Potthast, A., Rosenau, T. (2019): Gram-scale economical synthesis of trans-coniferyl alcohol and its corresponding thiol. Holzforschung, 74(2): 197-202.
Doi: https://doi.org/10.1515/hf-2018-0297
Prof.(FH) DI Dominik SchildProfessor Department of Life SciencesDr.rer.nat.techn. Georg Sixta
Professor Department of Life Sciences
Institut Biotechnologie
- Applied ChemistryBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyMaster of Science in Engineering / Vollzeit
Dr.rer.nat.techn. Georg SixtaProfessor Department of Life SciencesDr. techn. Dipl.-Ing. Sarita Paudel
Professorin Department of Business
Institut Digitalisierung und Informatik
- InformaticsBachelor of Science in Engineering / Vollzeit
- Medical and Pharmaceutical BiotechnologyBachelor of Science in Engineering / Vollzeit
- Applied ChemistryBachelor of Science in Engineering / Vollzeit
Paudel, S., Smith, P., Zseby, T. (2018): Stealthy Attacks on Smart Grid PMU State Estimation. Proceedings of the 13th International conference on Availability, Reliability and Security (ARES 2018), Article 16: 1-10.
Doi: https://doi.org/10.1145/3230833.3230868Paudel, S., Smith, P., Zseby, T. (2017): Attack Models for Advanced Persistent Threats in Smart Grid Wide Area Monitoring. Proceedings of the 2nd Workshop on Cyber-Physical Security and Resilience in Smart Grids (CPSR-SG'17): 61-66.
Doi: https://doi.org/10.1145/3055386.3055390Paudel, S., Smith, P., Zseby, T. (2017): Data Attacks in Wide Area Monitoring System. Proceedings of the Symposium on Innovative Smart Grid Cybersecurity Solutions.
Paudel, S., Smith, P., Zseby, T. (2016): Data integrity attacks in smart grid wide area monitoring. Proceedings of the 4th International Symposium for ICS & SCADA Cyber Security Research 2016 (ICS-CSR '16).
Doi: https://doi.org/10.14236/ewic/ICS2016.9Paudel, S., Tauber, M., Wagner, C., Hudic, A., Ng, W. (2014): Categorization of Standards, Guidelines and Tools for Secure System Design for Critical Infrastructure IT in the Cloud. 2014 IEEE 6th International Conference on Cloud Computing Technology and Science, Singapore: 956-963.
Florian, M., Paudel, S., Tauber, M. (2013): Trustworthy evidence gathering mechanism for multilayer cloud compliance. 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013).
Doi: https://doi.org/10.1109/ICITST.2013.6750257Paudel, S., Tauber, M., Brandic, I. (2013): Security standards taxonomy for Cloud applications in Critical Infrastructure IT. 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013).
Doi: https://doi.org/10.1109/ICITST.2013.6750282
Dr. techn. Dipl.-Ing. Sarita PaudelProfessorin Department of BusinessProf.(FH) MMag. Christopher Schwand
Institutsleitung Internationaler Handel und Nachhaltige Wirtschaft / Studiengangsleitung Exportorientiertes Management
Institut Internationaler Handel und Nachhaltige Wirtschaft
- Digital Business Transformation
- Quantitative und qualitative Forschungsmethoden
- Nachhaltige Entwicklung von Unternehmen, vernetzten Systemen und Wirtschaftsräumen
- Applied ChemistryBachelor of Science in Engineering / Vollzeit
- Export-oriented ManagementBachelor of Arts in Business / Vollzeit
- Export-oriented Management in TashkentBachelor of Arts in Business / Vollzeit
- ManagementMaster of Arts in Business / Berufsbegleitend
-
Guide für Mobiles Arbeiten
Department of Business
-
Enterprise 4.0 – Erfolg im digitalen Zeitalter
Department of Business
-
Digital Business Transformation
Department of Business
-
EUCert – European Certificates Innovative Online Training Campus. Weitere Entwicklungen einer Online Lernplattform aufgrund der Erkenntnisse des EQN Projekts
Department of Business
Bartz, M., Schwand, C. (2021): Spielregeln für Mobiles Arbeiten (ISBN 978-3950467628). Seattle: KDP.
Schwand, C., Kotek, K. (2019): Die Untersuchung des Informationsbedarfs, gesellschaftlicher Entwicklungen und neuer Werbeformen - Auswirkungen von Google Trends auf die Werbewirtschaft. In Heinemann, S. (Hrsg.), Werbegeschichten - Markenkommunikation zwischen Tradition und Innovation. Europäische Kulturen in der Wirtschaftskommunikation (307-326). Wiesbaden: Springer VS.
Kotek, K., Schoenberg, A., Schwand, C. (2018): CSR Behavior: Between Altruism and Profit Maximization. In Altenburger, R. (Hrsg.), Innovation Management and Corporate Social Responsibility (159-169). Wiesbaden: Springer Fachmedien.
Doi: https://doi.org/10.1007/978-3-319-93629-1Schwand, C., Kormann, G., Pacher, F., Bartz, M. (2018): Digitale Transformation: Mehrwert durch Vernetzung und Austausch in Multi-Projekt-Umgebungen durch strategische Partnerschaften. In Fachhochschule Salzburg GmbH (Hrsg.), Online Tagungsband FHK Forschungsforum 2018 (1-9). Salzburg: FFH.
Bartz, M., Schwand, C. (2017): Preis der Freiheit – Nutzen von Spielregeln für Mobil- Flexibles Arbeiten. In IMC Fachhochschule Krems GmbH (Hrsg.), Online Tagungsband FHK Forschungsforum 2017 (899-905). Krems: FFH.
Schwand, C., Kotek, K., Kormann, G. (2016): GW St. Pölten – Industriell. Integrativ. Innovativ. In Wagner, U., Reisinger, H., Schwand, C. (Hrsg.), Fallstudien aus der österreichischen Marketingpraxis 7 (99-108). Wien: Facultas.
Wagner, U. Reisinger, H., & Schwand, C. (2016): Fallstudien aus der österreichischen Marketingpraxis 7. Wien: Facultas Verlag.
Schwand, C. (2013): Nest Labs - The learning thermostat company. In Wagner, U., Reisinger, H., Schwand, C. (Hrsg.), Fallstudien aus der österreichischen Marketingpraxis 6 (127-136). Wien: Facultas Verlag.
Schwand, C. (2013): NIKI - AirBerlin for Austria. In Wagner, U., Reisinger, H., Schwand, C. (Hrsg.), Fallstudien aus der österreichischen Marketingpraxis 6 (115-126). Wien: Facultas Verlag.
Wagner, U., Reisinger, H., & Schwand, C. (2013): Fallstudien aus der österreichischen Marketingpraxis 6. Wien: Facultas Verlag.
Berger, S., Wagner, U., Schwand, C. (2012): Assessing Advertising Effectiveness: The Potential of Goal-Directed Behavior. Psychology and Marketing, 29(6): 411-421.
Doi: https://doi.org/10.1002/mar.20530Schwand, C., Berger, C., Hartbach, S., Kleiss, D., Kotek, K., Kormann, G., Schachner, M., & Neuherz, C. (2011): Grundelemente der Verkaufsraumgestaltung: Die Suche nach dem Stern. In FH Campus Wien (Hrsg.), Tagungsband 5. Forschungsforum der österreichischen Fachhochschulen, 27.-28. April 2011 (-). Wien: FFH.
Kormann, G., Schuneritsch, W., Bartz, M., Kotek, K., Schwand, C. (2011): Risikoadjustierte Entscheidungsmodelle im Servicebereich - ein Mythos trifft auf Best Practice. In FH Campus Wien (Hrsg.), Tagungsband 5. Forschungsforum der österreichischen Fachhochschulen, 27.-28. April 2011 (-). Wien: FFH.
Schwand, C., Vetschera, R., Wakolbinger, L. (2010): The influence of probabilities on the response mode bias in utility elicitation. Theory and Decision, 69(3): 395-416.
Doi: https://doi.org/10.1007/s11238-010-9193-8Schwand, C. (2009): Waldquelle – Die neue Nummer 2 in Österreich. In Wagner, U., Reisinger, H., Schwand, C. (Hrsg.), Fallstudien aus der österreichischen Marketingpraxis 5 (17-30). Wien: Facultas.
Wagner, U., Reisinger, H., Schwand, C. (2009): Fallstudien aus der österreichischen Marketingpraxis 5. Wien: Facultas.
Wagner, U., Reisinger, H., Schwand, C., Hoppe, D. (2006): Fallstudien aus der österreichischen Marketingpraxis 4. Wien: Facultas.
Schwand, C. (2006): Wiener Linien - Zwei Millionen Fahrgäste täglich. In Wagner, U., Reisinger, H., Schwand, C., Hoppe, D. (Hrsg.), Fallstudien aus der österreichischen Marketingpraxis 4 (155-164). Wien: Facultas.
Schwand, C. (2006): Hutchison 3G Austria - Mobile Multimedia für jedermann. In Wagner, U., Reisinger, H., Schwand, C., Hoppe, D. (Hrsg.), Fallstudien aus der österreichischen Marketingpraxis 4 (37-50). Wien: Facultas.
Schwand, C. (2006): Heraklith - Verkauf eines österreichischen Paradeunternehmens. In Wagner, U., Reisinger, H., Schwand, C., Hoppe, D. (Hrsg.), Fallstudien aus der österreichischen Marketingpraxis 4 (9-24). Wien: Facultas.
Prof.(FH) MMag. Christopher SchwandInstitutsleitung Internationaler Handel und Nachhaltige Wirtschaft /...
Zulassung & Aufnahme – die nächsten Schritte
Sie haben einen Studiengang gefunden, der perfekt zu Ihnen passt? Sehr gut – das Wichtigste ist damit schon geschafft. Informieren Sie sich jetzt über die nächsten Schritte. Wir haben alle relevanten Informationen für Sie zusammengefasst.
- 1
Zugangsvoraussetzungen
Wir informieren Sie gerne darüber, welche Voraussetzungen Sie für die Bewerbung mitbringen müssen.
- 2
Aufnahmeverfahren
Vorbereitung ist alles – lesen Sie nach, wie das Aufnahmeverfahren im Detail aussehen wird.
- 3
Termine und Fristen
Welche Termine müssen Sie für Ihre Online-Bewerbung im Auge behalten? Verschaffen Sie sich einen Überblick.
- 4
Online Bewerben
Sie haben sich für einen unserer Studiengänge entschieden? Zuerst einmal: Gratulation und vielen Dank für Ihr Vertrauen! Gerne führen wir Sie Schritt für Schritt durch Ihre Online-Bewerbung.
- 5
Studienrelevante Termine
Sie planen gerne voraus und möchten wissen, wann Ihr Studiengang startet? Hier werden Sie fündig!
Zugangsvoraussetzungen
Welche Zugangsvoraussetzungen gelten für unsere Bachelor-Studiengänge?
Ein Bachelor-Studium setzt voraus, dass Sie über eine allgemeine Hochschulreife – also über die Matura oder eine gleichwertige Qualifikation – verfügen. Falls Sie diese Voraussetzung nicht erfüllen, können Sie sich im Bereich Studieren ohne Matura darüber informieren, wie Sie sich trotzdem für einen unserer Bachelor-Studiengänge qualifizieren können.
Sie verfügen über ein ausländisches Zeugnis der allgemeinen Hochschulreife?
Wir prüfen die Gleichwertigkeit mit der allgemeinen Hochschulreife gemäß § 4 FHG (Fachhochschulgesetz) idgF, sobald die Online-Bewerbung vollständig abgeschlossen ist. Falls die Gleichwertigkeit nicht gegeben ist, erhalten Sie von uns alle Informationen über die nötigen Ergänzungsprüfungen.
Welchen Sprachnachweis benötigen Sie für unseren englischsprachigen Bachelor-Studiengang?
Wir werden Ihre Englischkenntnisse im Rahmen des Aufnahmegesprächs überprüfen. Gesonderte Zertifikate sind also nicht nötig.
Wichtig
Steht Ihnen der Präsenz- beziehungsweise Zivildienst noch bevor? Als männlicher Bewerber mit österreichischer Staatsbürgerschaft empfehlen wir Ihnen dringend, die Wehrpflicht noch vor dem Studium abzuleisten. So können Sie Ihr Studium ohne Unterbrechung durchführen und direkt nach dem Studium in das Berufsleben einsteigen.
Aufnahmeverfahren
Aufnahmegespräch
Wir möchten Sie gerne persönlich kennen lernen:
Im Rahmen der Online-Bewerbung ist ein Motivationsschreiben und ein kurzes Essay zu einem studiengangsrelevanten Thema zu verfassen. Vorgegebene Fragen zu Ihren Beweggründen, sowie die Anforderungen und Themenstellungen für Ihr Essay finden Sie in der Online-Bewerbung. Sie wählen eines der vorgeschlagenen Themen aus, führen eine Recherche durch um Ihren Wissenstand zu erweitern, setzen sich mit den Fragestellungen auseinander und bringen im Essay Ihren eigenen Standpunkt ein. Ihre Antworten sind in eigens dafür vorgesehene Eingabefelder einzutragen.
Für Ihr Aufnahmegespräch werden Ihr Motivationsschreiben und Ihr Essay als Grundlage herangezogen. Jede Bewerberin und jeder Bewerber erhält die Möglichkeit, sich in einem Einzelgespräch, das in der Regel mit dem Studiengangsleiter bzw. der Studiengangsleiterin geführt wird, vorzustellen. Neben dem persönlichen Kennenlernen werden Ihre Beweggründe für das Studium besprochen, das ausgewählte Thema und die Argumentation im Essay diskutiert, sowie die Relevanz dieses Themas für den Studiengang erörtert.
Das Aufnahmegespräch wird in der Unterrichtssprache des Studiengangs geführt und findet entweder online über Microsoft Teams oder Vorort statt.
Nach dem Aufnahmegespräch werden das Motivationsschreiben, der Essay und das Gespräch nach den inhaltlichen Aussagen, der Ausdruckskraft und der Argumentation bewertet.
Welche Aufnahmetermine gibt es?
Sie haben in der Regel die Wahl zwischen mehreren Aufnahmetagen, die mit Kontingenten hinterlegt sind. Im Zuge der Online-Bewerbung können Sie Ihren bevorzugten Termin auswählen. Um noch von der vollen Auswahl an Terminen profitieren zu können, empfehlen wir Ihnen, Ihre Bewerbung rechtzeitig durchzuführen.
Verschaffen Sie sich jetzt einen Überblick über die für Sie relevanten Termine:
Aufnahmegespräch
05.07.202228.07.2022Nachdem Sie Ihre Online Bewerbung erfolgreich abgeschlossen haben, wird Ihre Bewerbung auf Vollständigkeit und Richtigkeit geprüft. Sobald dieser Vorgang abgeschlossen ist, informieren wir Sie per E-Mail und bestätigen dabei auch den Aufnahmetermin.
Termine und Fristen
Ende der Bewerbungsfrist für EU StaatsbürgerInnen / Nachfrist | 15.04.2022 / 15.08.2022 |
---|---|
Ende der Bewerbungsfrist für Nicht-EU StaatsbürgerInnen | 15.04.2022 |
Fragen zum Studienangebot?
Studienberatung
Sie haben Fragen zu den Zugangsvoraussetzungen, zum Aufnahmeverfahren und Co? Unsere Studienberatung hilft Ihnen gerne weiter.
Ask a Student
Richten Sie Ihre Fragen direkt an unsere Studierenden und holen Sie sich Erfahrungen aus erster Hand. Unsere Facebook-Gruppe macht es möglich.
Zur Facebook-SeiteDiese Studiengänge könnten Sie auch interessieren
